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The well-known BH procedure

Order p-values : p(1) ≤ · · · ≤ p(m)

Compute k̂ = max{k : p(k) ≤ αk/m}

Reject all pi ≤ α k̂
m

FDR control at level π0α when wPRDS

Another formulation
k̂
m = max{u : Ĝ (u) ≥ u} := I

(
Ĝ
)
where

Ĝ : u 7→ m−1
m∑
i=1

1{pi≤αu}, u ∈ [0, 1]

G. Durand Data-driven optimal weights



Introduction : BH and weighting
Data-driven weighting : the theory

Implementation and very first simulations

An illustration of I (F )
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Weighted-BH

With given weights (wi )1≤i≤m such that
∑

i wi = m (called a
weight vector), form

Ĝw : u 7→ m−1
m∑
i=1

1{pi≤αuwi}

and reject all pi ≤ αûwi with û = I
(
Ĝw

)
.
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Weighted-BH
A generalization : weight functions

From Roquain and Van De Wiel 2009 :

Take a function W such that (Wi (u))i is a weight vector for all u
and

ĜW : u 7→ m−1
m∑
i=1

1{pi≤αuWi (u)}

is non-decreasing, then reject all pi ≤ αûWi (û) with û = I
(
ĜW

)
.
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Weighted-BH
A practical way to compute I

(
ĜW

)

No need to compute W (u) for each u !

For each k ∈ J1,mK, compute the pi
Wi (

k
m
)
and take qr the r -th

smallest. Let q0 = 0.
Then I

(
ĜW

)
= m−1 max{k ∈ J0,mK : qk ≤ α k

m}.
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Optimal weighting

Unconditional model : each hypothesis is null with proba π0.
Consider the procedure Ru

m rejecting pi if pi ≤ αuwi for all u.
Its power is Poww (u) := (1− π0)m−1∑m

i Fi (αuwi ) (Fi the
c.d.f. under the alternative).
Maximize it for all u :

Definition of optimal weights :

W ∗(u) = argmax
(wi )s.t.

∑m
i wi=m

Poww (u)
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Optimal weighting
Existence and uniqueness

Theorem (Roquain and Van De Wiel 2009)

Assume the following :
Fi is strictly concave and continuous on [0, 1]

Fi has a derivative fi on (0, 1)

fi (0+) is constant for all i , same for fi (1−)

limy→fi (0+)
f −1j (y)

f −1i (y)
exists in [0,∞] for all i , j

Then we have existence, uniqueness and continuity of W ∗, and
u 7→ uW ∗

i (u) is non-decreasing.
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Optimal weighting
Existence and uniqueness

Proof ideas
Compute an explicit formula using the Lagrange multiplier method :

L(λ,w) = m−1
m∑
i=1

Fi (αuwi )− λ

(
m∑
i=1

wg −m

)

gives us

W ∗
i (u) =

1
αu

f −1
i

(
Ψ−1(αu)

)
where Ψ(x) = m−1∑m

i=1 f
−1
i (x).
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Optimal weighting
The main problem and the resulting motivation

The distribution under the alternative Fi needs to be known to
compute the W ∗.
Goal : estimate W ∗ without the knowledge of the alternative
and obtain asymptotical results on FDR control and power for
the associated weighted-BH procedure.
Leads to data-driven optimal weighting.
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Data-driven optimal weighting

Assume that the p-values have uniform distribution under the
null.

Main idea :
W ∗(u) is also the unique maximizer of

Gw (u) = E
[
Ĝw (u)

]
= π0m

−1
m∑
i

max(αuwi , 1) + Poww (u)

the mean proportion of rejections done by the procedure Ru
m.

So we can estimate W ∗ by maximizing Gw ’s empiric counterpart
Ĝw .
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Data-driven optimal weighting
Grouping hypotheses

Key assumption

G groups of sizes (mg )1≤g≤G , where p-values have the same
distribution.

Examples :
The Adequate Yearly Progress data set where grouping schools
by size avoids a preference for large schools.
Search for differently expressed genes between individuals with
normal copy number or amplified one. Tests are more efficient
for genes with ratio normal vs amplified copy numbers near 1.
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Data-driven optimal weighting
More technical hypotheses

To obtain asymptotic results on Ŵ ∗, we assume the following :
p-values are independent.
The previous hypothesis made by Roquain and Van De Wiel
remain, and in addition fg (0+) =∞ ∀g .
mg

m −→
m→∞

πg > 0.

All the following proofs inspired by Roquain and Van De Wiel 2009,
Zhao and Zhang 2014 and Hu, Zhao, and Zhou 2010.
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The two main results

Theorem (FDR control)

The False Discovery Proportion converges to π0α almost surely so
the FDR too by dominated convergence.

Theorem (optimal power)

Note by Pow (W ) the power of a BH procedure using a weight
function W . Note by W the set of all sequences

(
w (m)

)
such that∑

mgw
(m)
g = m. Then :

lim
m→∞

Pow
(
Ŵ ∗
)
≥ sup

(w (m))∈W

lim sup
m→∞

Pow(w (m)).
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Some notations

From now W ∗ is the asymptotic optimal weight when the Fg
are known :

W ∗(u) = argmax
w :

∑
πgwg=1

G∞w (u)

= argmax
w :

∑
πgwg=1

∑
g

πgDg (αuwg )

with Dg (·) = π0 max(·, 1) + (1− π0)Fg (·).
P∞W (u) = (1− π0)

∑
g πgFg (αuWg (u)).

û = I
(
Ĝ
Ŵ ∗

)
and u∗ = I (G∞W ∗).
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A chain of technical results

A first lemma

sup
u∈[0,1]

sup
w∈(R+)G

∣∣∣Ĝw (u)− G∞w (u)
∣∣∣ a.s.−→ 0

by Glivenko-Cantelli theorem and mg

m → πg .
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The main technical proposition

Proposition

sup
u∈[0,1]

∣∣∣ĜŴ ∗(u)− G∞W ∗(u)
∣∣∣ a.s.−→ 0

or, equivalently,

sup
u∈[0,1]

∣∣∣G∞
Ŵ ∗

(u)− G∞W ∗(u)
∣∣∣ a.s.−→ 0.
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The main technical proposition
Proof ideas

Play with the triangular inequality and remove the absolute
values when able by using the maximality of Ĝ

Ŵ ∗
(u) and

G∞W ∗(u)

Problem
They are not maxima on the same sets :
Km = {w : m−1∑mgwg = 1} versus K∞ = {w :

∑
πgwg = 1}
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The main technical proposition
Proof ideas

We introduce two shifts δ(u) =
∑
πgŴ

∗
g (u)− 1 and

δ′(u) =
∑ mg

m W ∗
g (u)− 1.

Then we form shifted weights Ŵ∼(u) = Ŵ ∗(u)− δ(u) ∈ K∞

and W∼(u) = W ∗(u)− δ′(u) ∈ Km.
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The main technical proposition
Final ideas

Make appear
∣∣∣G∞

Ŵ∼
(u)− G∞W ∗(u)

∣∣∣ = G∞W ∗(u)− G∞
Ŵ∼

(u).

End up with supu
∣∣∣G∞

Ŵ ∗
(u)− G∞W ∗(u)

∣∣∣ ≤
supu

(
ĜW∼(u)− Ĝ

Ŵ ∗
(u)
)

+ oa.s.(1).

Use that ĜW∼(u)− Ĝ
Ŵ ∗

(u) ≤ 0. �
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The second important proposition

Proposition

û
a.s.−→

m→∞
u∗

from which we deduce Ĝ
Ŵ ∗

(û)
a.s.−→ G∞W ∗(u

∗) by continuity.

Note Xm = supu∈[0,1]
∣∣∣ĜŴ ∗

(u)− G∞W ∗(u)
∣∣∣ a.s.→ 0, take a δ in (0, u∗),

note u0 = u∗ − δ and for all δ′ ≥ δ, u′ = u∗ + δ′.
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The second important proposition
Proof

sδ = maxδ′≥δ (G∞W ∗(u
′)− u′) < 0 because if sδ = 0 it would

contradict u∗ maximality.

supδ′≥δ

(
Ĝ
Ŵ ∗

(u′)− u′
)
≤ sδ + Xm → sδ < 0

So when m→∞ we must have û < u∗ + δ.
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The second important proposition
Proof

G∞W ∗(u
0) ≥ G∞w (u0) with w = W ∗(u∗) by maximality.

G∞w (u0) = G∞w (u0)
u0

u0 > G∞w (u∗)
u∗ u0 = u0 by strict concavity.

Ĝ
Ŵ ∗

(u0)− u0 ≥ G∞W ∗(u
0)− u0 − Xm → G∞W ∗(u

0)− u0 > 0.
So when m→∞ we must have û > u∗ − δ. �
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Third and last proposition

We have shown that Ĝ
Ŵ ∗

(û)
a.s.−→ u∗, that is for the denominator of

the FDP. Showing that the numerator converges to π0αu
∗ is

straightforward after this :

Proposition

Ŵ ∗(û)
a.s.−→W ∗(u∗),

or, equivalently,
Ŵ∼(û)

a.s.−→W ∗(u∗).
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Third and last proposition
Proof ideas

One can show with the previous results and the triagular
inequality that

∣∣∣G∞
Ŵ∼(û)

(u∗)− G∞W ∗(u
∗)
∣∣∣ a.s.−→ 0.

By contradiction, if Ŵ∼(û)
a.s.9 W ∗(u∗) then we find a

w l 6= W ∗(u∗) maximizing G∞w (u∗) but W ∗(u∗) is unique. �
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Optimality in power
Proof ideas

First, Pow
(
Ŵ ∗
)

= E
[
P̂
Ŵ ∗

(û)
]
where P̂W (u) is m−1 times

the number of true alternative rejected.
P̂
Ŵ ∗

(û)
a.s.−→ P∞W ∗(u

∗).

For each accumulation point for Pow(w (m)) there is an
accumulation point w for w (m).
û(m

′′) a.s.−→ I (G∞w ) and then

P̂w (m′′)

(
û(m

′′)
)

a.s.−→ P∞w (I (G∞w )) ≤ P∞W ∗ (I (G∞w )) ≤
P∞W ∗(u

∗). �
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Computation

Fix a u, form p̃gi =
pgi
αu and order the p̃gi in each group :

p̃g ,1 ≤ · · · ≤ p̃g ,mg .

Also note p̃g ,0 = 0.
Maximize over w :

∑
mgwg = m ⇐⇒ maximize over

w :
∑

mgwg ≤ m.
If ∀g , p̃g ,1 > m, stop and no rejection. If ∃g , p̃g ,1 ≤ m,
continue and at least one rejection.

G. Durand Data-driven optimal weights



Introduction : BH and weighting
Data-driven weighting : the theory

Implementation and very first simulations

Computation

Form all G-tuples j :
∑

jg = 2 and check if there is one j such
that

∑
mg p̃g ,jg ≤ m

If there is one, at least 2 rejections and continue with G-tuples
of sum equal to 3.
If not, 1 rejection and use a wg = p̃g ,jg with a

j = (0, . . . , 0,

h-th position︷︸︸︷
1 , 0, . . . , 0) such that p̃h,1 ≤ m.

Reminder : the only values of u that need to be computed are
1, m−1

m , . . . , 1
m .
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First simulations : α = 0.05, 70% null hypothesis
FDR plot, 2 groups, π1 = π2 = 0.5
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First simulations : α = 0.05, 70% null hypothesis
Relative power plot, 2 groups, π1 = π2 = 0.5
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First simulations : α = 0.05, 70% null hypothesis
FDR plot, 2 groups, π1 = 0.3, π2 = 0.7
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First simulations : α = 0.05, 70% null hypothesis
Relative power plot, 2 groups, π1 = 0.3, π2 = 0.7

0.5 1.0 1.5 2.0 2.5 3.0

0.
01

0.
02

0.
03

0.
04

m=100
m=200
m=300
m=400
m=500

x axis : the µ̄
parameter. µ1 = µ̄
and µ2 = 2µ̄.
y axis : the difference
in power between our
procedure and the BH
procedure.

G. Durand Data-driven optimal weights



Introduction : BH and weighting
Data-driven weighting : the theory

Implementation and very first simulations

Some perspectives

Estimate π0 to control the FDR at level α instead of απ0.
A different π0 in each group.
Use wPRDS instead of independence.
Optimize the computation.
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The end

Thank you for your attention !
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