BH procedure using data-driven optimal weights for grouped hypotheses

Guillermo Durand I PMA

Work under the supervision of Etienne Roquain and Pierre Neuvial

09/12/2016 CMStatistics

Table of contents

- 1 Introduction: BH and oracle weighting
- 2 Data-driven weighting
- 3 Implementation and numerical simulations

Table of contents

- 1 Introduction: BH and oracle weighting
- 2 Data-driven weighting
- 3 Implementation and numerical simulations

Motivation Grouped hypotheses

Context

The hypotheses we want to test are grouped : Same distribution under \mathcal{H}_1 in each group

Examples:

- The Adequate Yearly Progress data set where grouping schools by size avoids a preference for large schools.
- Search for differently expressed genes between individuals with normal copy number or amplified one. Tests are more efficient when the ratio "normal vs amplified copy numbers" is near 1.
- Grouping genes by pathway is also possible.

The well-known BH procedure

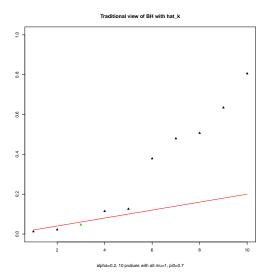
- Order p-values : $p_{(1)} \leq \cdots \leq p_{(m)}$
- Compute $\hat{k} = \max\{k : p_{(k)} \le \alpha k/m\}$
- Reject all $p_i \leq \alpha \frac{\hat{k}}{m}$
- FDR control at level $\pi_0 \alpha$ when wPRDS

Another formulation

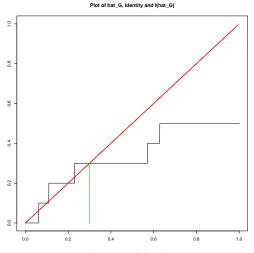
$$rac{\hat{k}}{m}=\max\{u:\,\widehat{G}(u)\geq u\}:=\mathcal{I}\left(\widehat{G}
ight)$$
 where

$$\widehat{G}: u \mapsto m^{-1} \sum_{i=1}^{m} \mathbb{1}_{\{p_i \le \alpha u\}}, u \in [0,1]$$

An illustration of $\mathcal{I}(\widehat{G})$



An illustration of $\mathcal{I}(\widehat{G})$



Weighted-BH

With given weights $(w_i)_{1 \le i \le m}$ such that $\sum_i w_i = m$ (called a weight vector), form

$$\widehat{G}_w: u \mapsto m^{-1} \sum_{i=1}^m \mathbb{1}_{\{p_i \leq \alpha u w_i\}}$$

and reject all $p_i \leq \alpha \hat{u} w_i$ with $\hat{u} = \mathcal{I}\left(\widehat{G}_w\right)$.

BH is a weighted-BH procedure with $\forall i, w_i = 1$.

Weighted-BH

A generalization : weight functions

From Roquain and Van De Wiel 2009:

Take a function W such that $(W_i(u))_i$ is a weight vector for all u and

$$\widehat{G}_W: u \mapsto m^{-1} \sum_{i=1}^m \mathbb{1}_{\{p_i \leq \alpha u \mid W_i(u)\}}$$

is non-decreasing, then reject all $p_i \leq \alpha \hat{u} W_i(\hat{u})$ with $\hat{u} = \mathcal{I}(\widehat{G}_W)$.

Weighted-BH

A practical way to compute $\mathcal{I}\left(\widehat{G}_{W}\right)$

• No need to compute W(u) for each u!

For each $k \in [1, m]$, compute the $\frac{p_i}{W_i(\frac{k}{m})}$ and take q_k the k-th smallest. Let $q_0 = 0$.

Then
$$\mathcal{I}\left(\widehat{G}_{W}\right)=m^{-1}\max\{k\in\llbracket 0,m\rrbracket:q_{k}\leq\alpha\frac{k}{m}\}.$$

Optimal weighting

- Unconditional model : $\forall i, \mathbb{P}(i \in \mathcal{H}_0) = \pi_0$.
- Consider the procedure R_m^u rejecting p_i if $p_i \leq \alpha u w_i$ for all u.
- Its power is $\operatorname{Pow}_w(u) := (1 \pi_0) m^{-1} \sum_{i=1}^m F_i(\alpha u w_i)$ (F_i the c.d.f. under the alternative).
- Maximize it for all u :

Definition of optimal weights:

$$W^*(u) = \underset{(w_i) \text{s.t. } \sum_{i}^{m} w_i = m}{\operatorname{Pow}_w(u)}$$

Optimal weighting Existence and uniqueness

Assume some regularity properties of the F_i , fulfilled in the gaussian 1-sided framework.

Theorem (Roquain and Van De Wiel 2009)

Then we have existence, uniqueness and continuity of W^* , and $u \mapsto uW_i^*(u)$ is non-decreasing.

Illustration of $W^*(u)$ as an argmax

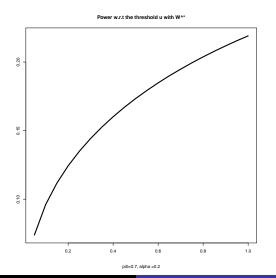
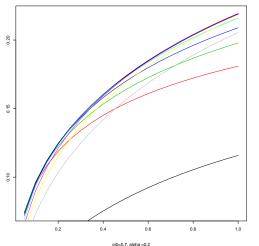


Illustration of $W^*(u)$ as an argmax



Optimal weighting Main problem and resulting motivation

- F_i unknown under the alternative! So is W^* .
- Goal: estimate W*, obtain asymptotical results on FDR control and power optimality.
- Leads to data-driven optimal weighting.

Table of contents

- 1 Introduction: BH and oracle weighting
- 2 Data-driven weighting
- 3 Implementation and numerical simulations

Data-driven optimal weighting

 Assume that the p-values have uniform distribution under the null.

Main idea:

 $W^*(u)$ is also the unique maximizer of

$$G_w(u) = \mathbb{E}\left[\widehat{G}_w(u)\right] = \pi_0 m^{-1} \sum_{i=1}^m \max(\alpha u w_i, 1) + \mathsf{Pow}_w(u)$$

the mean proportion of rejections done by the procedure R_m^u .

Data-driven optimal weighting

So we can estimate W^* by maximizing G_w 's empiric counterpart \widehat{G}_{w} .

Define $\widehat{W}^*(u)$ as :

$$\widehat{W}^*(u) \in \operatorname*{argmax}_{w \geq 0: \sum_i w_i = m} \widehat{G}_w(u) = \operatorname*{argmax} \frac{1}{m} \sum_{i=1}^m \mathbb{1}_{p_i \leq \alpha u w_i}$$

Data-driven optimal weighting Assumptions

- All previous assumptions.
- G groups of sizes $(m_g)_{1 \leq g \leq G}$, where p-values have the same distribution.
- p-values are independent.
- $f_g(0^+) = \infty \forall g$.
- $\frac{m_g}{m} \xrightarrow{m \to \infty} \pi_g > 0$.

Proofs of the following results inspired by Roquain and Van De Wiel 2009, Zhao and Zhang 2014 and Hu, Zhao, and Zhou 2010.

The two main results

Theorem (FDR control)

$$FDP\left(BH\left(\widehat{W}^*\right)\right) \xrightarrow{a.s.} \pi_0 \alpha$$

$$FDR\left(BH\left(\widehat{W}^*\right)\right) \longrightarrow \pi_0 \alpha$$

Theorem (power optimality)

Note by \mathscr{W} the set of all sequences $(w^{(m)})$ such that $w_g \geq 0$ and $\sum m_g w_g^{(m)} = m$. Then :

$$\lim_{m \to \infty} \operatorname{Pow}\left(BH\left(\widehat{W}^*\right)\right) \geq \sup_{\left(w^{(m)}\right) \in \mathscr{W}} \limsup_{m \to \infty} \operatorname{Pow}\left(BH\left(w^{(m)}\right)\right).$$

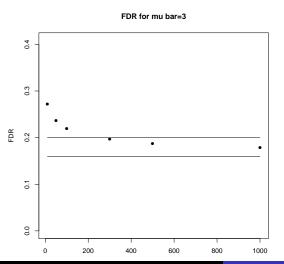
Table of contents

- 1 Introduction: BH and oracle weighting
- 2 Data-driven weighting
- 3 Implementation and numerical simulations

About the computation of W^* Key ideas

- We use only $\widehat{W}^*(u)$ for $u = \frac{1}{m}, \frac{2}{m}, \dots, \frac{m-1}{m}, 1$.
- Max over $w: \sum m_{\sigma} w_{\sigma} = m = \max \text{ over } w: \sum m_{\sigma} w_{\sigma} \leq m$.
- Given a $u, w \mapsto \widehat{G}_w(u)$ discrete, only jumps at the $\frac{p_{g,i}}{gu} \Longrightarrow$ search $\widehat{W}_{\sigma}^{*}(u)$ as a $\frac{p_{g,i_g}}{g_{g,i_g}}$ such that $\sum m_g \frac{p_{g,i_g}}{g_{g,i_g}} \leq m$.
- $\widehat{G}_{w}(u)$ nondecreasing in u AND w: attempt to reject 1 hyp, then 2, then 3... for $\frac{1}{m}$, when fail at k hyp, try to reject k hyp for $\frac{2}{m}$, and so on.

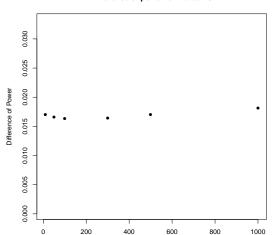
FDR plot $\alpha = 0.2, 80\%$ true null, $\pi_1 = \pi_2 = 0.5$



- $\mu_1 = \bar{\mu} \text{ and } \mu_2 = 2\bar{\mu}$.
- x axis : m.
- y axis: the FDR of our procedure over 1000 replications.

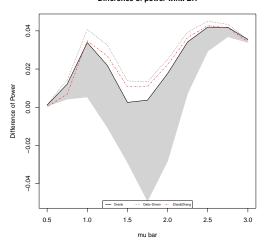
Difference of power with BH $\alpha = 0.2$, 80% true null, $\pi_1 = \pi_2 = 0.5$

Difference of power for mu bar=3



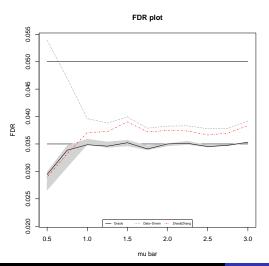
- $\mu_1 = \bar{\mu} \text{ and } \mu_2 = 2\bar{\mu}.$
- x axis : m.
- y axis: the power of our procedure over 1000 replications minus the power of BH.

Comparison with other methods $\alpha = 0.05, 70\%$ true null, $m_1 = m_2 = 500$



- $\mu_1 = \bar{\mu} \text{ and } \mu_2 = 2\bar{\mu}$.
- 1000 replications.
- Zhao&Zhang is a an adapation of Zhao and Zhang 2014 without $\hat{\pi}_0$.
- Grey area delimited by min and max for many weighted-BH procedures.
- Overfitting in our method.

Comparison with other methods $\alpha = 0.05, 70\%$ true null, $m_1 = m_2 = 500$



- $\mu_1 = \bar{\mu} \text{ and } \mu_2 = 2\bar{\mu}$.
- 1000 replications.
- Zhao&Zhang is a an adapation of Zhao and Zhang 2014 without $\hat{\pi}_0$.
- Grey area delimited by min and max for many weighted-BH procedures.
- Overfitting in our method.

Some perspectives

- Estimate π_0 to control the FDR at level α instead of $\alpha\pi_0$.
- A different π_0 in each group ?
- Use wPRDS instead of independence ?
- Optimize the computation ?
- Estimate G_w with a better function than \widehat{G}_w ?
- Bad method when small signal :

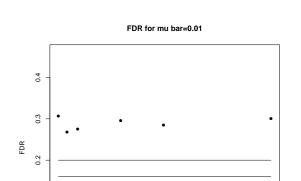
FDR plot $\alpha = 0.2, 80\%$ true null, $\pi_1 = \pi_2 = 0.5$

200

400

0.1

0.0



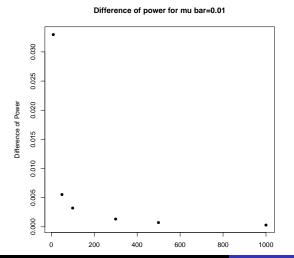
- $\mu_1 = \bar{\mu} \text{ and } \mu_2 = 2\bar{\mu}$.
- x axis : m.
- y axis: the FDR of our procedure over 1000 replications.

800

600

1000

Difference of power with BH $\alpha = 0.2, 80\%$ true null, $\pi_1 = \pi_2 = 0.5$



- $\mu_1 = \bar{\mu} \text{ and } \mu_2 = 2\bar{\mu}$.
- x axis: m.
- y axis : the power of our procedure over 1000 replications minus the power of BH.

Bibliography

- Hu, James X., Hongyu Zhao, and Harrison H. Zhou (2010). "False discovery rate control with groups". In: *Journal of the American Statistical Association* 105 491.
- Roquain, Etienne and Mark A. Van De Wiel (2009). "Optimal weighting for false discovery rate control". In: *Electronic Journal of Statistics* 3, pp. 678–711.
- Zhao, Haibing and Jiajia Zhang (2014). "Weighted p-value procedures for controlling FDR of grouped hypotheses". In:

 Journal of Statistical Planning and Inference 151, pp. 90–106.

The end

Thank you for your attention!

Existence and uniqueness of oracle optimal weights Assumptions

From Roquain and Van De Wiel 2009:

- F_i is strictly concave and continuous on [0, 1]
- F; has a derivative f; on (0, 1)
- $f_i(0^+)$ is constant for all i, same for $f_i(1^-)$
- $\lim_{y \to f_i(0^+)} \frac{f_j^{-1}(y)}{f_j^{-1}(y)}$ exists in $[0, \infty]$ for all i, j

These hypotheses are fulfilled in the gaussian 1-sided framework.

Optimal weighting Existence and uniqueness

Proof ideas

Compute an explicit formula using the Lagrange multiplier method :

$$L(\lambda, w) = m^{-1} \sum_{i=1}^{m} F_i(\alpha u w_i) - \lambda \left(\sum_{i=1}^{m} w_g - m \right)$$

gives us

$$W_i^*(u) = \frac{1}{\alpha u} f_i^{-1} \left(\Psi^{-1}(\alpha u) \right)$$

where $\Psi(x) = m^{-1} \sum_{i=1}^{m} f_i^{-1}(x)$.

Some notations

• From now W^* is the asymptotic optimal weight when the F_g are known :

$$\begin{aligned} W^*(u) &= \underset{w: \sum \pi_g w_g = 1}{\operatorname{argmax}} G_w^{\infty}(u) \\ &= \underset{w: \sum \pi_g w_g = 1}{\operatorname{argmax}} \sum_g \pi_g D_g(\alpha u w_g) \end{aligned}$$

with
$$D_g(\cdot) = \pi_0 \max(\cdot, 1) + (1 - \pi_0)F_g(\cdot)$$
.

•
$$P_W^{\infty}(u) = (1 - \pi_0) \sum_g \pi_g F_g(\alpha u W_g(u)).$$

$$\bullet \ \hat{u} = \mathcal{I}\left(\widehat{G}_{\widehat{W}^*}\right) \text{ and } u^* = \mathcal{I}\left(G_{W^*}^{\infty}\right).$$

A chain of technical results

A first lemma

$$\sup_{u \in [0,1]} \sup_{w \in (\mathbb{R}^+)^G} \left| \widehat{G}_w(u) - G_w^\infty(u) \right| \stackrel{a.s.}{\longrightarrow} 0$$

by Glivenko-Cantelli theorem and $\frac{m_g}{m} \to \pi_g$.

The main technical proposition

Proposition

$$\sup_{u\in[0,1]}\left|\widehat{G}_{\widehat{W}^*}(u)-G_{W^*}^{\infty}(u)\right|\xrightarrow{a.s.}0$$

or, equivalently,

$$\sup_{u\in[0,1]}\left|G_{\widehat{W}^*}^{\infty}(u)-G_{W^*}^{\infty}(u)\right|\xrightarrow{a.s.}0.$$

The main technical proposition Proof ideas

• Play with the triangular inequality and remove the absolute values when able by using the maximality of $\widehat{G}_{\widehat{W}^*}(u)$ and $G^{\infty}_{W^*}(u)$

Problem

They are not maxima on the same sets:

$$K^m = \{w : m^{-1} \sum m_g w_g = 1\}$$
 versus $K^\infty = \{w : \sum \pi_g w_g = 1\}$

The main technical proposition Proof ideas

- We introduce two shifts $\delta(u) = \sum \pi_g \widehat{W}_g^*(u) 1$ and $\delta'(u) = \sum \frac{m_g}{m} W_{\sigma}^*(u) - 1.$
- ullet Then we form shifted weights $\widehat{W}^\sim(u)=\widehat{W}^*(u)-oldsymbol{\delta}(u)\in K^\infty$ and $W^{\sim}(u) = W^*(u) - \delta'(u) \in K^m$.

The main technical proposition Final ideas

- ullet Make appear $\left|G_{\widehat{W}^{\sim}}^{\infty}(u) G_{W^*}^{\infty}(u)
 ight| = G_{W^*}^{\infty}(u) G_{\widehat{W}^{\sim}}^{\infty}(u).$
- $\begin{array}{l} \bullet \ \ \text{End up with sup}_u \left| G_{\widehat{W}^*}^{\infty}(u) G_{W^*}^{\infty}(u) \right| \leq \\ \sup_u \left(\widehat{G}_{W^{\sim}}(u) \widehat{G}_{\widehat{W}^*}(u) \right) + o_{a.s.}(1). \end{array}$
- Use that $\widehat{G}_{W^{\sim}}(u) \widehat{G}_{\widehat{W}^*}(u) \leq 0$. \square

The second important proposition

Proposition

$$\hat{u} \xrightarrow[m \to \infty]{a.s.} u^*$$

from which we deduce $\widehat{G}_{\widehat{W}^*}(\widehat{u}) \stackrel{a.s.}{\longrightarrow} G^{\infty}_{W^*}(u^*)$ by continuity.

G. Durand

Note
$$X_m = \sup_{u \in [0,1]} \left| \widehat{G}_{\widehat{W}^*}(u) - G_{W^*}^{\infty}(u) \right| \stackrel{a.s.}{\to} 0$$
, take a δ in $(0, u^*)$, note $u^0 = u^* - \delta$ and for all $\delta' > \delta$, $u' = u^* + \delta'$.

The second important proposition Proof

- $s_{\delta} = \max_{\delta' > \delta} (G^{\infty}_{W^*}(u') u') < 0$ because if $s_{\delta} = 0$ it would contradict u* maximality.
- $\sup_{\delta' \geq \delta} \left(\widehat{G}_{\widehat{W}^*}(u') u' \right) \leq s_{\delta} + X_m \to s_{\delta} < 0$
- So when $m \to \infty$ we must have $\hat{u} < u^* + \delta$.

The second important proposition Proof

- $G_{W^*}^{\infty}(u^0) \geq G_w^{\infty}(u^0)$ with $w = W^*(u^*)$ by maximality.
- $G_w^{\infty}(u^0) = \frac{G_w^{\infty}(u^0)}{u^0}u^0 > \frac{G_w^{\infty}(u^*)}{u^*}u^0 = u^0$ by strict concavity.
- $\widehat{G}_{\widehat{W}^*}(u^0) u^0 \ge G_{W^*}^{\infty}(u^0) u^0 X_m \to G_{W^*}^{\infty}(u^0) u^0 > 0.$
- So when $m \to \infty$ we must have $\hat{u} > u^* \delta$.

Third and last proposition

We have shown that $\widehat{G}_{\widehat{W}^*}(\widehat{u}) \xrightarrow{a.s.} u^*$, that is for the denominator of the FDP. Showing that the numerator converges to $\pi_0 \alpha u^*$ is straightforward after this :

Proposition

$$\widehat{W}^*(\widehat{u}) \stackrel{a.s.}{\longrightarrow} W^*(u^*),$$

or, equivalently,

$$\widehat{W}^{\sim}(\widehat{u}) \stackrel{a.s.}{\longrightarrow} W^*(u^*).$$

Third and last proposition Proof ideas

- One can show with the previous results and the triagular inequality that $\left|G_{\widehat{W}^{\sim}(\widehat{u})}^{\infty}(u^*) G_{W^*}^{\infty}(u^*)\right| \stackrel{a.s.}{\longrightarrow} 0$.
- By contradiction, if $\widehat{W}^{\sim}(\widehat{u}) \stackrel{a.s.}{\to} W^*(u^*)$ then we find a $w^l \neq W^*(u^*)$ maximizing $G_w^{\sim}(u^*)$ but $W^*(u^*)$ is unique. \square

Optimality in power Proof ideas

- First, Pow $\left(\widehat{W}^*\right) = \mathbb{E}\left[\widehat{P}_{\widehat{W}^*}(\widehat{u})\right]$ where $\widehat{P}_W(u)$ is m^{-1} times the number of true alternative rejected.
- $\bullet \ \widehat{P}_{\widehat{W}^*}(\widehat{u}) \xrightarrow{a.s.} P_{W^*}^{\infty}(u^*).$
- For each accumulation point for $Pow(w^{(m)})$ there is an accumulation point w for $w^{(m)}$.
- $\hat{u}^{(m'')} \stackrel{a.s.}{\longrightarrow} \mathcal{I}(G_w^{\infty})$ and then
- $\begin{array}{ll} \bullet & \widehat{P}_{w^{(m'')}}\left(\widehat{u}^{(m'')}\right) \xrightarrow{a.s.} P_{w}^{\infty}\left(\mathcal{I}\left(G_{w}^{\infty}\right)\right) \leq P_{W^{*}}^{\infty}\left(\mathcal{I}\left(G_{w}^{\infty}\right)\right) \leq \\ & P_{W^{*}}^{\infty}\left(u^{*}\right). \ \ \Box \end{array}$

More about the computation of \widehat{W}^* Start of the algorithm

• Fix $u = \frac{1}{m}$, form $\tilde{p}_{gi} = \frac{p_{gi}}{\alpha \mu}$ and order the \tilde{p}_{gi} in each group :

$$\tilde{p}_{g,1} \leq \cdots \leq \tilde{p}_{g,m_g}$$
.

Also note $\tilde{p}_{g,0} = 0$.

• If $\forall g, \tilde{p}_{g,1} > m$, no rejection and move to $u = \frac{2}{m}$. If $\exists g, \tilde{p}_{g,1} \leq m$, continue and at least 1 rejection.

More about the computation of \widehat{W}^* Start of the algorithm

- Form all G-tuples $j: \sum j_g = 2$ and check if there is one j such that $\sum m_g \tilde{p}_{g,j_g} \leq m$
 - If there is one, at least 2 rejections and continue with G-tuples of sum equal to 3.
 - If not, 1 rejection and use a $w_g = \tilde{p}_{g,j_g}$ with a h-th position

$$j = (0, \dots, 0, 1, 0, \dots, 0)$$
 such that $\tilde{p}_{h,1} \leq m$, then try to reject 2 hypotheses with $u = \frac{2}{m}$.

More about the computation of \widehat{W}^* At rejection level k

- Form all G-tuples $j: \sum j_g = k$ and check if there is one j such that $\sum m_g \tilde{p}_{g,j_g} \leq m$
 - If there is one, at least k rejections and continue with G-tuples of sum equal to k+1.
 - If not, k-1 rejections and use a $w_g = \tilde{p}_{g,j_g}$ with a j that was suitable for k-1, then try to reject k hypotheses with $u = \frac{2}{m}$.

Illustration of $\widehat{W}^*(u)$

Oracle vs Data-driven weights

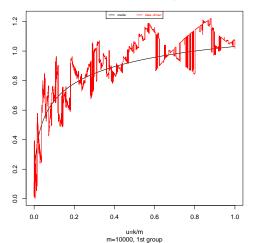
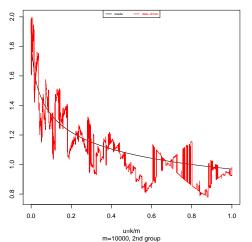
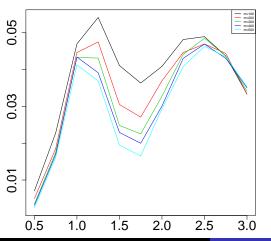


Illustration of $\widehat{W}^*(u)$

Oracle vs Data-driven weights



The overfitting decreases with m $\alpha = 0.05, 70\%$ true null, $\pi_1 = \pi_2 = 0.5$



- $\mu_1 = \bar{\mu} \text{ and } \mu_2 = 2\bar{\mu}$.
- x axis : μ̄.
- y axis: the power of our procedure over 1000 replications minus the power of BH.

