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Introduction : BH and oracle weighting

Motivation
Grouped hypotheses

The hypotheses we want to test are grouped :
Same distribution under 7 in each group

Examples :

@ The Adequate Yearly Progress data set where grouping schools
by size avoids a preference for large schools.

@ Search for differently expressed genes between individuals with
normal copy number or amplified one. Tests are more efficient
when the ratio "normal vs amplified copy numbers" is near 1.

o Grouping genes by pathway is also possible.
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Introduction : BH and oracle weighting

The well-known BH procedure

@ Order p-values : p(1) < -+ < p(m)

e Compute k = max{k : p(x) < ak/m}
@ Reject all p; < a%

@ FDR control at level mgar when wPRDS

Another formulation

k max{u: G(u) > u} =T (@) where

G:u— m_lz]l{pigau}, u € [0,1]
i=1
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Introduction : BH and oracle weighting

An illustration

K

Traditional view of BH with hat_k
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Introduction : BH and oracle weighting

An illustration of Z((/J\)

Plot of hat_G, Identity and I(hat_G)
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Introduction : BH and oracle weighting

Weighted-BH

With given weights (w;)1<j<m such that ). w; = m (called a
weight vector), form

m

~ 1

Gy:u—m Z]I{PiSOéUWi}
i=1

and reject all p; < adiw; with 1 =7 <§W>

BH is a weighted-BH procedure with Vi, w; = 1.

B~
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Introduction : BH and oracle weighting

Weighted-BH

A generalization : weight functions

From Roquain and Van De Wiel 2009 :
Take a function W such that (W;(u)); is a weight vector for all u
and

Gw - uvrs m Z Lipi<auw;(u)}
i=1

is non-decreasing, then reject all p; < adW; (d) with i =7 (@W)

| AN eatistique
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Introduction : BH and oracle weighting

Weighted-BH

A practical way to compute Z (@W)

@ No need to compute W/(u) for each u !

For each k € [1, m], compute the W-,Eih) and take g4 the k-th

smallest. Let gp = 0.
Then Z (G\W) =m Imax{k € [0,m] : gx < aX}.

| AN eatistique
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Introduction : BH and oracle weighting

Optimal weighting

e Unconditional model : Vi, P (i € 74) = mo.

e Consider the procedure R, rejecting p; if p;i < auw; for all u.

o Its power is Powy (u) := (1 — mo)m™ 1 Y7, Fi (cuw;) (F; the
c.d.f. under the alternative).

@ Maximize it for all u :

Definition of optimal weights :

W*(u) =  argmax  Pow,(u)
(wj)s.t. > wi=m
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Introduction : BH and oracle weighting

Optimal weighting

Existence and uniqueness

Assume some regularity properties of the F;, fulfilled in the gaussian
1-sided framework.

Theorem (Roquain and Van De Wiel 2009)

Then we have existence, uniqueness and continuity of W*, and
u — uW*(u) is non-decreasing.
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Introduction : BH and oracle weighting

lllustration of W*(u) as an argmax

Power w.r.t the threshold u with W"*
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Introduction : BH and oracle weighting

lllustration of W*(u) as an argmax

Power with WA* and various constant weights vectors

0.20
L

015
L

0.10
L

pi0=0.7, alpha =0.2

G. Durand Data-driven optimal weights



Introduction : BH and oracle weighting

Optimal weighting

Main problem and resulting motivation

@ F; unknown under the alternative ! So is W*.

@ Goal : estimate W™, obtain asymptotical results on FDR
control and power optimality.

@ Leads to data-driven optimal weighting.

- tatistique
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Data-driven weighting

Data-driven optimal weighting

@ Assume that the p-values have uniform distribution under the
null.

W*(u) is also the unique maximizer of

Guw(u)=E [@W(u)} = mom ™1 Z max(auw;, 1) + Pow,, (u)

1

the mean proportion of rejections done by the procedure RY,.

| AN eatistique
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Data-driven weighting

Data-driven optimal weighting

So we can estimate W* by maximizing G, 's empiric counterpart
Gw.

Define W*(u) as

/VV*(U) argmax G, (u) = argmax — Z 1y <auw;
w>0:)" wi=m i—1
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Data-driven weighting

Data-driven optimal weighting

Assumptions

@ All previous assumptions.

@ G groups of sizes (mg)1<g<G, where p-values have the same
distribution.

@ p-values are independent.
o f,(07) =00 Vg.
° % — mg > 0.

m—00

Proofs of the following results inspired by Roquain and Van De Wiel
2009, Zhao and Zhang 2014 and Hu, Zhao, and Zhou 2010.
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Data-driven weighting

The two main results

Theorem (FDR control)

FDP (BH (W)) 25 oo

FDR (BH (W)) s T

Theorem (power optimality)

Note by # the set of all sequences (W(’")) such that w; > 0 and

> mgwé(rm) =m. Then :

lim Pow (BH (W*)) > sup limsup Pow (BH (W(’"))) .

m—>00 (W(m))GW m—>00
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Implementation and numerical simulations

About the computation of W*
Key ideas

— 1 -
e We use only W*(u) for u= ., = ... m== 1.

® Max over w: ) mgwy = m = max over w:y mgwg < m.
e Given a u, w — G, (u) discrete, only jumps at the % =
7% Pg,ig Pg,ig
search W/ (u) as a —2}F such that ) mg=2% < m.

° @W(u) nondecreasing in u AND w : attempt to reject 1 hyp,
then 2, then 3... for % when fail at k hyp, try to reject k hyp
for % and so on.

| N\ atistiane
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Implementation and numerical simulations

FDR plot

a=0.2, 80% true null, 71 = m™ = 0.5

FDR for mu bar=3 @ uy = jiand pp = 2.
« | @ x axis : m.
) @ y axis : the FDR of
our procedure over
S 1000 replications.
8 s
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Implementation and numerical simulations

Difference of power with BH
a=0.2, 80% true null, 71 = m™ = 0.5

Difference of power for mu bar=3 @ U1 = IEL and M2 = 2ﬂ
@ X axis: m.
g 1 @ y axis : the power of
o our procedure over
E 1000 replications
£ g minus the power of
a o
. BH.
g o
[a)
31 T T T T T T |%p\ j/mmw
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Implementation and numerical simulations

Comparison with other methods
a = 0.05, 70% true null, m; = ms = 500

Difference of power w.r.t. BH @ U1 = IEL and M2 = 2ﬂ

@ 1000 replications.
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@ Zhao&Zhang is a an
adapation of Zhao
and Zhang 2014
without 7g.
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o Grey area delimited
by min and max for
many weighted-BH
procedures.

Difference of Power

-0.02

-0.04

e Overfitting in our
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Implementation and numerical simulations

Comparison with other methods
a = 0.05, 70% true null, m; = ms = 500

FDR plot @ p1 = fand pp = 2.
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@ 1000 replications.
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and Zhang 2014
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Implementation and numerical simulations

perspectives

Estimate mg to control the FDR at level « instead of amyg.

A different 7o in each group 7

Optimize the computation 7

o

o

@ Use wPRDS instead of independence ?

o

o Estimate G,, with a better function than éw ?
o

Bad method when small signal :

| N\ atistiane
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Implementation and numerical simulations

FDR plot

a=0.2, 80% true null, 71 = m™ = 0.5

FDR for mu bar=0.01 @ uy = jiand pp = 2.
@ Xx axis : m.
- @ y axis : the FDR of
our procedure over
) 1000 replications.
8
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Implementation and numerical simulations

Difference of power with BH
a=0.2, 80% true null, 71 = m™ = 0.5

Difference of power for mu bar=0.01 @ U1 = IEL and M2 = 2ﬂ
@ x axis : m.
g 1 @ y axis : the power of
o our procedure over
E 1000 replications
£ g minus the power of
a o
. BH.
g o
[a)
31 T T T T T T |%p\ j/mmw
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Implementation and numerical simulations
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Implementation and numerical simulations

The end

Thank you for your attention !
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Existence and uniqueness of oracle optimal weights
Assumptions

From Roquain and Van De Wiel 2009 :
@ F; is strictly concave and continuous on [0, 1]
@ F; has a derivative f; on (0,1)

e f;(0%") is constant for all i, same for f;(17)
. £ y) ..
limy _£0+) W exists in [0, co] for all i,

These hypotheses are fulfilled in the gaussian 1-sided framework.

| N\ atistiane
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Optimal weighting

Existence and uniqueness

Compute an explicit formula using the Lagrange multiplier method :

LA, w)=mt Z Fi(auw;) (Z Wg — m>
i=1

gives us
1
Wi (u) = —Ff 1 (v!
F(w) = — £ (V7 (aw))

where U(x) = m~1 37 £71(x).
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Some notations

e From now W™ is the asymptotic optimal weight when the F,
are known :

W*(u) = argmax G, (u)
w:d mgwg=1

o Piy(u) =(1—mo) ), mgFg(auW,
o i :I(@W*> and u* =Z(Gy.).

- tatistique
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A chain of technical results

sup  sup @W(u) — G (u)| 20
u€l0,1] we(r+)¢

by Glivenko-Cantelli theorem and =& — .
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The main technical proposition

Proposition

sup ‘GW*(U) — G.(u)] 2= 0
ue0,1]
or, equivalently,
sup ‘Gi’%(u)— e (u)| 25 0.
]

uel0,1

| N\ atistiane
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The main technical proposition
Proof ideas

o Play with the triangular inequality and remove the absolute
values when able by using the maximality of G, (u) and
Gy~ (u)

Problem

They are not maxima on the same sets :
K™ ={w:m™ 1> mgw, =1} versus K*® = {w: > myw, = 1}
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The main technical proposition
Proof ideas

@ We introduce two shifts §(u) = zng;(u) —1and
§'(u) = TEWg(u) — 1.

@ Then we form shifted weights WN(U) = W*(u) —0(u) € K=
and W™~ (u) = W*(u) — 8’ (u) € K™.

| N\ atistiane
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The main technical proposition
Final ideas

o Make appear ‘Gﬁ/’{(u) — GW*(U)’ = G- (u) — G%N(“)‘

e End up with sup,

Gz (u) — Gy (u)| <
sup, (EWN(U) - EW*(U)) + 0,5 (1).

o Use that Gy~ (u) — @W*(u) <0.g

| N\ atistiane
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The second important proposition

Proposition

from which we deduce EW*(L?) 22 G9.(u*) by continuity.

Note Xy = sup,eqo 1] (A;W*(“) - W(u)) 220, take a 4 in (0, u*),
note u® = u* —§ and for all & > 6§, v/ = u* +§'.
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The second important proposition
Proof

@ s = maxg>;5 (G- (u') — u") < 0 because if s5 =0 it would
contradict v* maximality.

@ SUpsi>s (é\w*(ul) — u’) <ss4+Xm—>s5<0

@ So when m — oo we must have i < v* + 0.

| N\ atistiane
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The second important proposition
Proof

00, (u0) > G (uP) with w = W*(u*) by maximality.
G (ud) = Gv‘f;ﬁ,“‘))uo > GV?Z&“*)UO = u0 by strict concavity.
EA* ) — 0 > G, (1) — W — X, — G (u®) — 0 > 0.
W w

So when m — oo we must have i > v* — 4. g

| N\ atistiane
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Third and last proposition

We have shown that @W(ﬁ) 22 u*, that is for the denominator of
the FDP. Showing that the numerator converges to mpau* is
straightforward after this :

Proposition

W (8) =% W (u"),

or, equivalently, e
W~ (a) 2% W (u*).
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Third and last proposition

Proof ideas

@ One can show with the previous results and the triagular

inequality that G%~ (u*) — Gz () as g

(4)
e By contradiction, if WN(ﬁ) 22 W*(u*) then we find a
w! £ W*(u*) maximizing G2°(u*) but W*(u*) is unique. o

| N\ atistiane
G. Durand Data-driven optimal weights



Optimality in power

Proof ideas

o First, Pow (W*) = E [.B/W*(ﬁ)} where Py (u) is m™! times
the number of true alternative rejected.

° ﬁW*(ﬁ) 25 Py« (u*).

o For each accumulation point for Pow(w(™) there is an
accumulation point w for w(™.

o (M) 2% T(G2) and then

o Py (80M) 2% P32 (T(G3)) < PR (T(6Y)) <

Py-(u™). o

| N\ atistiane
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More about the computation of W*
Start of the algorithm

_ Psi

i -1 5 . — Pe
o Fix u= ., form pg = &

and order the p,; in each group :

ﬁg,l S e S ﬁg,mg-

Also note pg 9 = 0.

o If Vg, pg,1 > m, no rejection and move to u = % If
Jg, pg,1 < m, continue and at least 1 rejection.

| N\ atistiane
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More about the computation of W*
Start of the algorithm

@ Form all G-tuples j : Y~ j; = 2 and check if there is one j such

that Y mgpg , <m
o If there is one, at least 2 rejections and continue with G-tuples
of sum equal to 3.
o If not, 1 rejection and use a w; = Pg e with a
h-th position
- /\ ~
j=1(0,...,0, 1 ,0,...,0) such that ps1 < m, then try to

reject 2 hypotheses with u = %

| N\ atistiane
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More about the computation of W*

At rejection level k

@ Form all G-tuples j : }_ j; = k and check if there is one j such
that Y mgpg , <m
o If there is one, at least k rejections and continue with G-tuples

of sum equal to kK + 1.

o If not, k — 1 rejections and use a w, = p, j, with a j that was
suitable for k — 1, then try to reject k hypotheses with u = %

| N\ atistiane
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lllustration of W*(u)

Oracle vs Data—driven weights
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u=k/m h jﬂ”

m=10000, 1st group
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lllustration of W*(u)

Oracle vs Data—driven weights
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m=10000, 2nd group
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The overfitting decreases with m
a = 0.05, 70% true null, 73 = 7 = 0.5

@ p1 = fand pp = 2.

o @ X axis : [i.

S @ y axis : the power of
our procedure over

] 1000 replications

o minus the power of

O 4 BH.

o

—

Q |

o

05 10 15 20 25 30 @\ﬁ
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