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Motivation
Grouped hypotheses

Context
The hypotheses we want to test are grouped :
Same distribution under H1 in each group

Examples :
The Adequate Yearly Progress data set where grouping schools
by size avoids a preference for large schools.
Search for differently expressed genes between individuals with
normal copy number or amplified one. Tests are more efficient
when the ratio "normal vs amplified copy numbers" is near 1.
Grouping genes by pathway is also possible.

G. Durand Data-driven optimal weights



Introduction : BH and oracle weighting
Data-driven weighting

Implementation and numerical simulations

The well-known BH procedure

Order p-values : p(1) ≤ · · · ≤ p(m)

Compute k̂ = max{k : p(k) ≤ αk/m}

Reject all pi ≤ α k̂
m

FDR control at level π0α when wPRDS

Another formulation
k̂
m = max{u : Ĝ (u) ≥ u} := I

(
Ĝ
)
where

Ĝ : u 7→ m−1
m∑
i=1

1{pi≤αu}, u ∈ [0, 1]
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An illustration of I
(
Ĝ
)
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alpha=0.2, 10 pvalues with alt mu=1, pi0=0.7
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An illustration of I
(
Ĝ
)
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Weighted-BH

With given weights (wi )1≤i≤m such that
∑

i wi = m (called a
weight vector), form

Ĝw : u 7→ m−1
m∑
i=1

1{pi≤αuwi}

and reject all pi ≤ αûwi with û = I
(
Ĝw

)
.

BH is a weighted-BH procedure with ∀i ,wi = 1.
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Weighted-BH
A generalization : weight functions

From Roquain and Van De Wiel 2009 :

Take a function W such that (Wi (u))i is a weight vector for all u
and

ĜW : u 7→ m−1
m∑
i=1

1{pi≤αuWi (u)}

is non-decreasing, then reject all pi ≤ αûWi (û) with û = I
(
ĜW

)
.
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Weighted-BH
A practical way to compute I

(
ĜW

)

No need to compute W (u) for each u !

For each k ∈ J1,mK, compute the pi
Wi (

k
m
)
and take qk the k-th

smallest. Let q0 = 0.
Then I

(
ĜW

)
= m−1 max{k ∈ J0,mK : qk ≤ α k

m}.
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Optimal weighting

Unconditional model : ∀i , P (i ∈H0) = π0.
Consider the procedure Ru

m rejecting pi if pi ≤ αuwi for all u.
Its power is Poww (u) := (1− π0)m−1∑m

i=1 Fi (αuwi ) (Fi the
c.d.f. under the alternative).
Maximize it for all u :

Definition of optimal weights :

W ∗(u) = argmax
(wi )s.t.

∑m
i wi=m

Poww (u)
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Optimal weighting
Existence and uniqueness

Assume some regularity properties of the Fi , fulfilled in the gaussian
1-sided framework.

Theorem (Roquain and Van De Wiel 2009)

Then we have existence, uniqueness and continuity of W ∗, and
u 7→ uW ∗

i (u) is non-decreasing.
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Illustration of W ∗(u) as an argmax
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Illustration of W ∗(u) as an argmax
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Optimal weighting
Main problem and resulting motivation

Fi unknown under the alternative ! So is W ∗.
Goal : estimate W ∗, obtain asymptotical results on FDR
control and power optimality.
Leads to data-driven optimal weighting.
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Data-driven optimal weighting

Assume that the p-values have uniform distribution under the
null.

Main idea :
W ∗(u) is also the unique maximizer of

Gw (u) = E
[
Ĝw (u)

]
= π0m

−1
m∑
i

max(αuwi , 1) + Poww (u)

the mean proportion of rejections done by the procedure Ru
m.
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Data-driven optimal weighting

So we can estimate W ∗ by maximizing Gw ’s empiric counterpart
Ĝw .

Define Ŵ ∗(u) as :

Ŵ ∗(u) ∈ argmax
w≥0:

∑
i wi=m

Ĝw (u) = argmax
1
m

m∑
i=1

1pi≤αuwi
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Data-driven optimal weighting
Assumptions

All previous assumptions.
G groups of sizes (mg )1≤g≤G , where p-values have the same
distribution.
p-values are independent.
fg (0+) =∞ ∀g .
mg

m −→
m→∞

πg > 0.

Proofs of the following results inspired by Roquain and Van De Wiel
2009, Zhao and Zhang 2014 and Hu, Zhao, and Zhou 2010.
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The two main results

Theorem (FDR control)

FDP
(
BH

(
Ŵ ∗
))

a.s.−→ π0α

FDR
(
BH

(
Ŵ ∗
))
−→ π0α

Theorem (power optimality)

Note by W the set of all sequences
(
w (m)

)
such that wg ≥ 0 and∑

mgw
(m)
g = m. Then :

lim
m→∞

Pow
(
BH

(
Ŵ ∗
))
≥ sup

(w (m))∈W

lim sup
m→∞

Pow
(
BH

(
w (m)

))
.
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About the computation of Ŵ ∗
Key ideas

We use only Ŵ ∗(u) for u = 1
m ,

2
m , . . . ,

m−1
m , 1.

Max over w :
∑

mgwg = m = max over w :
∑

mgwg ≤ m.

Given a u, w 7→ Ĝw (u) discrete, only jumps at the pg,i
αu =⇒

search Ŵ ∗
g (u) as a

pg,ig
αu such that

∑
mg

pg,ig
αu ≤ m.

Ĝw (u) nondecreasing in u AND w : attempt to reject 1 hyp,
then 2, then 3... for 1

m , when fail at k hyp, try to reject k hyp
for 2

m , and so on.
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FDR plot
α = 0.2, 80% true null, π1 = π2 = 0.5
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Difference of power with BH
α = 0.2, 80% true null, π1 = π2 = 0.5
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Comparison with other methods
α = 0.05, 70% true null, m1 = m2 = 500
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Difference of power w.r.t. BH µ1 = µ̄ and µ2 = 2µ̄.
1000 replications.
Zhao&Zhang is a an
adapation of Zhao
and Zhang 2014
without π̂0.
Grey area delimited
by min and max for
many weighted-BH
procedures.
Overfitting in our
method.
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Comparison with other methods
α = 0.05, 70% true null, m1 = m2 = 500
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Some perspectives

Estimate π0 to control the FDR at level α instead of απ0.
A different π0 in each group ?
Use wPRDS instead of independence ?
Optimize the computation ?
Estimate Gw with a better function than Ĝw ?
Bad method when small signal :

G. Durand Data-driven optimal weights



Introduction : BH and oracle weighting
Data-driven weighting

Implementation and numerical simulations

FDR plot
α = 0.2, 80% true null, π1 = π2 = 0.5
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x axis : m.
y axis : the FDR of
our procedure over
1000 replications.
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Difference of power with BH
α = 0.2, 80% true null, π1 = π2 = 0.5
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The end

Thank you for your attention !
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Existence and uniqueness of oracle optimal weights
Assumptions

From Roquain and Van De Wiel 2009 :
Fi is strictly concave and continuous on [0, 1]

Fi has a derivative fi on (0, 1)

fi (0+) is constant for all i , same for fi (1−)

limy→fi (0+)
f −1
j (y)

f −1
i (y)

exists in [0,∞] for all i , j

These hypotheses are fulfilled in the gaussian 1-sided framework.
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Optimal weighting
Existence and uniqueness

Proof ideas
Compute an explicit formula using the Lagrange multiplier method :

L(λ,w) = m−1
m∑
i=1

Fi (αuwi )− λ

(
m∑
i=1

wg −m

)

gives us

W ∗
i (u) =

1
αu

f −1
i

(
Ψ−1(αu)

)
where Ψ(x) = m−1∑m

i=1 f
−1
i (x).
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Some notations

From now W ∗ is the asymptotic optimal weight when the Fg
are known :

W ∗(u) = argmax
w :

∑
πgwg=1

G∞w (u)

= argmax
w :

∑
πgwg=1

∑
g

πgDg (αuwg )

with Dg (·) = π0 max(·, 1) + (1− π0)Fg (·).
P∞W (u) = (1− π0)

∑
g πgFg (αuWg (u)).

û = I
(
Ĝ
Ŵ ∗

)
and u∗ = I (G∞W ∗).
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A chain of technical results

A first lemma

sup
u∈[0,1]

sup
w∈(R+)G

∣∣∣Ĝw (u)− G∞w (u)
∣∣∣ a.s.−→ 0

by Glivenko-Cantelli theorem and mg

m → πg .
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The main technical proposition

Proposition

sup
u∈[0,1]

∣∣∣ĜŴ ∗(u)− G∞W ∗(u)
∣∣∣ a.s.−→ 0

or, equivalently,

sup
u∈[0,1]

∣∣∣G∞
Ŵ ∗

(u)− G∞W ∗(u)
∣∣∣ a.s.−→ 0.
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The main technical proposition
Proof ideas

Play with the triangular inequality and remove the absolute
values when able by using the maximality of Ĝ

Ŵ ∗
(u) and

G∞W ∗(u)

Problem
They are not maxima on the same sets :
Km = {w : m−1∑mgwg = 1} versus K∞ = {w :

∑
πgwg = 1}
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The main technical proposition
Proof ideas

We introduce two shifts δ(u) =
∑
πgŴ

∗
g (u)− 1 and

δ′(u) =
∑ mg

m W ∗
g (u)− 1.

Then we form shifted weights Ŵ∼(u) = Ŵ ∗(u)− δ(u) ∈ K∞

and W∼(u) = W ∗(u)− δ′(u) ∈ Km.
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The main technical proposition
Final ideas

Make appear
∣∣∣G∞

Ŵ∼
(u)− G∞W ∗(u)

∣∣∣ = G∞W ∗(u)− G∞
Ŵ∼

(u).

End up with supu
∣∣∣G∞

Ŵ ∗
(u)− G∞W ∗(u)

∣∣∣ ≤
supu

(
ĜW∼(u)− Ĝ

Ŵ ∗
(u)
)

+ oa.s.(1).

Use that ĜW∼(u)− Ĝ
Ŵ ∗

(u) ≤ 0. �
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The second important proposition

Proposition

û
a.s.−→

m→∞
u∗

from which we deduce Ĝ
Ŵ ∗

(û)
a.s.−→ G∞W ∗(u

∗) by continuity.

Note Xm = supu∈[0,1]
∣∣∣ĜŴ ∗

(u)− G∞W ∗(u)
∣∣∣ a.s.→ 0, take a δ in (0, u∗),

note u0 = u∗ − δ and for all δ′ ≥ δ, u′ = u∗ + δ′.

G. Durand Data-driven optimal weights



Introduction : BH and oracle weighting
Data-driven weighting

Implementation and numerical simulations

The second important proposition
Proof

sδ = maxδ′≥δ (G∞W ∗(u
′)− u′) < 0 because if sδ = 0 it would

contradict u∗ maximality.

supδ′≥δ

(
Ĝ
Ŵ ∗

(u′)− u′
)
≤ sδ + Xm → sδ < 0

So when m→∞ we must have û < u∗ + δ.
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The second important proposition
Proof

G∞W ∗(u
0) ≥ G∞w (u0) with w = W ∗(u∗) by maximality.

G∞w (u0) = G∞w (u0)
u0 u0 > G∞w (u∗)

u∗ u0 = u0 by strict concavity.

Ĝ
Ŵ ∗

(u0)− u0 ≥ G∞W ∗(u
0)− u0 − Xm → G∞W ∗(u

0)− u0 > 0.
So when m→∞ we must have û > u∗ − δ. �
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Third and last proposition

We have shown that Ĝ
Ŵ ∗

(û)
a.s.−→ u∗, that is for the denominator of

the FDP. Showing that the numerator converges to π0αu
∗ is

straightforward after this :

Proposition

Ŵ ∗(û)
a.s.−→W ∗(u∗),

or, equivalently,
Ŵ∼(û)

a.s.−→W ∗(u∗).
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Third and last proposition
Proof ideas

One can show with the previous results and the triagular
inequality that

∣∣∣G∞
Ŵ∼(û)

(u∗)− G∞W ∗(u
∗)
∣∣∣ a.s.−→ 0.

By contradiction, if Ŵ∼(û)
a.s.9 W ∗(u∗) then we find a

w l 6= W ∗(u∗) maximizing G∞w (u∗) but W ∗(u∗) is unique. �
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Optimality in power
Proof ideas

First, Pow
(
Ŵ ∗
)

= E
[
P̂
Ŵ ∗

(û)
]
where P̂W (u) is m−1 times

the number of true alternative rejected.
P̂
Ŵ ∗

(û)
a.s.−→ P∞W ∗(u

∗).

For each accumulation point for Pow(w (m)) there is an
accumulation point w for w (m).
û(m

′′) a.s.−→ I (G∞w ) and then

P̂w (m′′)

(
û(m

′′)
)

a.s.−→ P∞w (I (G∞w )) ≤ P∞W ∗ (I (G∞w )) ≤
P∞W ∗(u

∗). �
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More about the computation of Ŵ ∗
Start of the algorithm

Fix u = 1
m , form p̃gi =

pgi
αu and order the p̃gi in each group :

p̃g ,1 ≤ · · · ≤ p̃g ,mg .

Also note p̃g ,0 = 0.
If ∀g , p̃g ,1 > m, no rejection and move to u = 2

m . If
∃g , p̃g ,1 ≤ m, continue and at least 1 rejection.
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More about the computation of Ŵ ∗
Start of the algorithm

Form all G-tuples j :
∑

jg = 2 and check if there is one j such
that

∑
mg p̃g ,jg ≤ m

If there is one, at least 2 rejections and continue with G-tuples
of sum equal to 3.
If not, 1 rejection and use a wg = p̃g ,jg with a

j = (0, . . . , 0,

h-th position︷︸︸︷
1 , 0, . . . , 0) such that p̃h,1 ≤ m, then try to

reject 2 hypotheses with u = 2
m .
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More about the computation of Ŵ ∗
At rejection level k

Form all G-tuples j :
∑

jg = k and check if there is one j such
that

∑
mg p̃g ,jg ≤ m

If there is one, at least k rejections and continue with G-tuples
of sum equal to k + 1.
If not, k − 1 rejections and use a wg = p̃g ,jg with a j that was
suitable for k − 1, then try to reject k hypotheses with u = 2

m .
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Illustration of Ŵ ∗(u)
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Illustration of Ŵ ∗(u)

0.0 0.2 0.4 0.6 0.8 1.0

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

u=k/m

oracle data−driven

Oracle vs Data−driven weights

m=10000, 2nd group

G. Durand Data-driven optimal weights



Introduction : BH and oracle weighting
Data-driven weighting

Implementation and numerical simulations

The overfitting decreases with m
α = 0.05, 70% true null, π1 = π2 = 0.5
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minus the power of
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