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Motivation
Grouped hypotheses

The hypotheses have a group structure :
same distribution under 1 in each group

Examples :

@ The Adequate Yearly Progress data set where grouping schools
by size avoids a preference for large schools (Cai and Sun
2009).

@ An fMRI study where voxels from the front and the back of
the brain have different distribution (Cai and Sun 2009).

@ Grouping genes by pathway.



Motivation
Examples from Cai and Sun 2009
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Topic of this talk :

Handle the group structure by weighting p-values (Holm 1979,
Genovese, Roeder, and Wasserman 2006, Blanchard and Roquain 2008, Hu,
Zhao, and Zhou 2010, Zhao and Zhang 2014, ...)

One procedure : IHW (Ignatiadis et al. 2016), first suggested in the
discussion section of Roquain and Van De Wiel 2009.

Here : philosophy of IHW and relation to previous work, and my
contributions on it, including a variant.
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From BH to oracle weights
The well-known BH procedure

@ Order p-values : p1) < -+ < p(m)
e Compute k = max{k : Pk < ak/m}
@ Reject all p; < a%

@ FDR control at level mgar when wPRDS

Useful other formulation

=~ = max{u : Gu)>u}:=T (@) where

G:u— mflz]l{pigau}, u € [0,1]
i=1




From BH to oracle weights

An illustration of I(é\)




From BH to oracle weights

Weighted-BH (WBH)

Take weights (w;)i1<i<m s.t. Y_; w; = m (weight vector), form

m

~ 1

GW U= m Z]I{PISOCUWi}
i=1

and reject all p; < adiw; with 1 =7 <§W>

BH is a WBH procedure with w; = 1 Vi.
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From BH to oracle weights

Weighted-Step-Up (WSU)

A generalization : non-linear weight functions

From Roquain and Van De Wiel 2009 :
Take W s.t. (Wi(u)); is a weight vector Yu and
. m
Gw = m™ Y L caumi(u))
i=1

is nondecreasing, then WSU (W) = {i : p; < adW; (8)} with
0 =1 (Gw).
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From BH to oracle weights

Weighted-Step-Up (WSU)

A practical way to compute Z (6W>

No need to compute W (u) for each u !

Vk € [1, m], compute all szii) and take gy the k-th smallest.
Let go = 0. "
Then Z (@W) =m I max{k € [0,m] : gx < aX}.

Now : what W to choose ?



From BH to oracle weights

Optimal weighting

Unconditional model : Vi, P (i € Ho) = mo.

C.d.f. under the alternative : F;.

Consider the procedure Ry, rejecting p; if p; < auw;.
Its power is P.S.,m)(u) = (1 —mo)m 37, Fi (cuw;)

Maximize it for all u :

Definition of optimal weights :

W*(m)(u) = argmax P\S.,m)(u)

wiy " wi=m




From BH to oracle weights

Optimal weighting

Existence and uniqueness

Assume some regularity properties of the F; (concavity,
differentiability, fulfilled in the gaussian 1-sided framework).

Theorem (Roquain and Van De Wiel 2009)

Then we have existence, uniqueness and continuity of W*(™), and
U uW,-*(m)(u) is non-decreasing.

Moreover, WSU (W*(’")) asymptotically enjoys FDR control at
level mgar and power optimality among all WBH procedures.
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From BH to oracle weights

lllustration of W*(u) as an argmax

Power w.r.t the threshold u with WA* Power with WA* and various constant weights vectors
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From BH to oracle weights

Optimal weighting

Main problem and resulting motivation

@ F; unknown under the alternative ! So is W*.

@ Goal : estimate W™, obtain asymptotical results on FDR
control and power optimality.
@ Leads to data-driven optimal weighting and IHW.
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Optimal data-driven weights

Data-driven optimal weighting

@ Assume that the p-values have uniform distribution under the
null.

’

W*(u) is also the unique maximizer of

Gy(u)=E [G\W(u)} = W—n? Z(auw,- A1) + Pow,,(u)

the mean proportion of rejections done by Ry, ..
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Optimal data-driven weights

Data-driven optimal weighting

— estimate W* by maximizing G,,'s empiric counterpart Gu.

Define W*(u) as

W*(u) argmax G, (u) = argmax — Z o

w>0:3"; wi=m i—1
Optimal data-driven step-up procedure :
wsu (w*)

(same as IHW)




Optimal data-driven weights

Data-driven optimal weighting

Assumptions

@ Assumptions of Roquain and Van De Wiel 2009.

o G groups of sizes (mg)z<g, where p-values have the same
distribution.

@ p-values are independent.

o a>af= (7ro +(1—m0) >, fg(0+))71 (Chi 2007).

° % — mg > 0.
m—o0
Proofs of the following results inspired by (Roquain and Van
De Wiel 2009), (Zhao and Zhang 2014) and (Hu, Zhao, and Zhou
2010).



Optimal data-driven weights
First main result

Theorem (FDR control)

FDP (Wsu (W)) 25 oo

FDR (Wsu (W)) — s moa

Only at level « in Ignatiadis et al. 2016 but with less assumptions.



Optimal data-driven weights
Second main result

Theorem (power optimality)

lim Pow <WSU (W)) — lim Pow (Wsu <W*(’")>>

m—0o0 m—>00

and (corollary)

lim Pow (WSU (W*)) > lim sup Pow (WSU (W(m))>

m=500 m—»00

for all sequences of determinisitic weights (w(™).




Optimal data-driven weights

Stabilization variant

e WSU <W*> overfits so with low signal we loose the FDR
control in finite sample.
@ We should prefer BH then.

@ — test if there is signal before choosing the procedure

Stabilized WSU (W*)

ausuy () = { 030 () 00 =

with ¢ =117 g, .10 Zm = V/MSsup,epo 1) (@W(u) - au) and
qa,m the (1 — ) quantile of Zyp,.




Optimal data-driven weights

Stabilization variant

Small signal = Z,, close to Zy,, in distribution, and

FDR (swsuj (W*)) = E [¢5 FOP (WsU (W*))
+(1 — ¢5) FDP (BH)]
< E[¢g + FDP (BH)]
<P(Zmn > qm)+ FDR(BH)
S P(Zom > 93,m) + FDR(BH)
< 3 + FDR (BH)

£ — 0 for asymptotic control ?

b 22



Optimal data-driven weights

Stabilization variant
Result

sWSUg (W*) is asymptotically equivalent to WSU (VV\*) because

$p 22 1 when m — oo, even if B = B, — 0 not too slowly
(Bm > exp (=m'™")).

Proof relies on the DKWM inequality (Massart 1990).
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Numerical aspects

About the computation of W*
Key ideas

e Compute only W*(u) foru=212 .  m=17

m’ m? m

© Max over w: ) mgwgy = m <> max over w:y mgwg < m.

e Fixing u, w — @W(u) discrete, only jumps at the & —

au
A* Pg,ig pg,"g
search Wy (u) as a —*% such that ) my="& < m.

° @W(u) nondecreasing in u AND w : try to reject 1 hyp, then
2, then 3... for u = L+, when fail at k hyp, try to reject k hyp

m
foru=2

m
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Numerical aspects

FDR plot

FDR for mu bar=0.01 @ T = T2 = 0.5
5 ® p1=jiand pp = 2.
@ Xx axis : m.
S @ y axis : the FDR of
our procedure over
o 1000 replications.
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Numerical aspects

FDR plot

FDR for mu bar=3 @ T = T2 = 0.5
5 ® p1=jiand pp = 2.
e 5 =0.05.
3 @ X axis : m.
@ y axis : the FDR of
1 our procedure over
8 1000 replications.
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Numerical aspects

Difference of power with BH

Difference of power for mu bar=0.01 @ T = T2 = 0.5
] ° = i and o = 2.
s | e 3 =0.05.
@ X axis : m.

N @ y axis : the power of
3 our procedure over
2 2 1000 replications
s ° minus the power of
o

BH.
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Numerical aspects

Difference of power with BH

Difference of power for mu bar=3 @ T = T2 = 0.5
B} 1 @ pu1 = [ and up = 2[.
8 4 . R .
E @ Xx axis : m.
’ is : th f
Ll @ y axis : the power o
g1 our procedure over
g 1000 replications
o .
% 2 minus the power of
g g4
8 o BH.
£
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Numerical aspects
Comparison with other methods

o WSU <W*> and sWSU (W*) plotted.
e Varying signal [i.
@ Oracle is the oracle method of Roquain and Van De Wiel 20009.

@ Zhao&Zhang is a an adapation of Zhao and Zhang 2014
without 7.

@ Many weighted-BH procedures plotted = grey area in the
figures.



Numerical aspects

Comparison with other methods
a = 0.05, 70% true null, m;y = mx = 500, 8 = 0.01

Difference of power for m=1000 FDR for m=1000
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Numerical aspects

Comparison with other methods
a = 0.05, 70% true null, m;y = mx = 500, 8 = 0.01

p1 = fi and pp = 2Ji.

1000 replications.

Overfitting in our method.

Good control for small and large fz but not medium.
Choose smaller 5 7 (0.01 here)
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Numerical aspects

Current work
Go further than Ignatiadis et al. 2016

Good theoretical properties but with strong assumptions.

Notably, in real life g is a mo; depending on g.

Estimate G,, with a better estimator than G,, ?

Finite sample guarantees ?
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Numerical aspects
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Numerical aspects
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Numerical aspects
The end

Thank you for your attention !



Comparison with other methods
a = 0.05, 70% true null, m;y = my = 500, 8 = 0.05

Difference of power for m=1000 FDR for m=1000
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Existence and uniqueness of oracle optimal weights

Assumptions

From Roquain and Van De Wiel 2009 :
@ F; is strictly concave and continuous on [0, 1]
@ F; has a derivative f; on (0,1)

e f;(0") is constant for all i, same for f;(17)
-1
o limy_ ¢+ ?Tgi exists in [0, o] for all 7, j

These hypotheses are fulfilled in the gaussian 1-sided framework.
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Optimal weighting

Existence and uniqueness

L\, w)=m! Z (cvuw;) <Z Wg — m)
i=1

gives us
1
Wi (u) = —F (vt
P (u) = — 71 (V7 (aw))

where U(x) = m~1 37 £71(x).

Compute an explicit formula using the Lagrange multiplier method :




Some notations

@ From now W* is the asymptotic optimal weight when the F,
are known :

W*(u) = argmax GJ2(u)

Wiy mgwg=1

= argmax E 7Tg auwg
w:d mgwg=1

with Dg(-) = mo max(-,1) + (1 — mo) Fg(-).
o Piy(u) = (1—mo) ), mgFglauWg(u)).
o i I<6W*> and u* =7 (Gy.).



A chain of technical results

sup  sup @W(u)— GX(u)| 230
u€l0,1] we(Rr+)¢

A . m
by Glivenko-Cantelli theorem and —%¢ — 7.




The main technical proposition

Proposition

a.s.

sup éW*(”)_ Gy-(u)] =0

ue0,1]

or, equivalently,

a.s.

sup ‘G%*(u)— G (u)] 2% 0.

u€el0,1]




The main technical proposition

Proof ideas

© Manipulate with the triangular inequality and remove the
absolute values when able by using the maximality of G, (u)
and G (u)

Problem

They are not maxima on the same sets :
K™ ={w:m1Y mgw, =1} versus K = {w : Y mzw, = 1}

BN



The main technical proposition

Proof ideas

e We introduce two shifts d(u) = ngW;(u) —1and
§'(u) = > TEWg(u) — 1.

@ Then we form shifted weights W”(u) = W*(u) —0(u) € K=
and W™~ (u) = W*(u) — 8’(u) € K™.



The main technical proposition

Final ideas

@ Use that )G%N(u) - GW*(U)‘ = Gy (u) — GZ_(u).
e End up with

sup | G35, (1) — Gif- ()] < sup (Gw~(u) = Gy (W) + Co

for some ¢ 235 0.

o Use that Gy~ (u) — G

W*(u) < 0. O



The second important proposition

Proposition

A

a.s. o
u— u

m—o0

from which EW*(ﬁ) 2% G- (u*) because éw*(ﬁ) = 0 and
Gy« (u*) = u*.

Note Xm = sup,co,1] CA;W*(U) - Gﬁ/o(u)) 220, take a 4 in (0, u*),
note ' = v* —d and for all & > 6§, v/ = uv* +§'.



The second important proposition
Proof

@ s = maxg>;5 (G- (u') — u’) < 0 because if s5 =0 it would
contradict u* maximality.

@ SuUpsi>s (@W*(ul) — u’) <ss+Xm—>s5<0

@ So when m — oo we must have i < v* + 0.

-
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The second important proposition
Proof

Gio(u®) > G2 (u®) with w = W*(u*) by maximality.
G (u0) = GV?ZE,UO)UO > GV?Z&“*)UO = u0 by strict concavity.
@W*(uo) — 0> G (u0) — W — Xipy — GRS (uf) — 0 > 0.

So when m — oo we must have i > v* — 4. g

-
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Third and last proposition

We have shown that @W(ﬁ) 22 u*, that is for the denominator of
the FDP. Showing that the numerator converges to moau™ is
straightforward after this :

Proposition

W (a) =5 W (),

or, equivalently, .
W™ (@) 22 W*(u*).

p
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Third and last proposition

Proof ideas

@ One can show with the previous results and the triagular

inequality that G%N(ﬁ)(U*)—Gﬁ/O*(u*) as o

e By contradiction, if Ww(ﬁ) 22 W (u*) then we find a
w! £ W*(u*) maximizing G2°(u*) but W*(u*) is unique. o

-
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Optimality in power

Proof ideas

o First, Pow (W*) =E [Isw*(ﬁ)] where Py (u) is m™! times
the number of true alternative rejected.
o P, () 2% P (u*) and Py (8) 25 Py, (u*).

@ For each limit point for Pow(w(™) there is a limit point w for
w(m),
o (M) 22 7 (G2°) and then

o Py (80M)) 2% P32 (T(G3)) < PR (T(6Y)) <

Py-(u™). o
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More about the computation of W*
Start of the algorithm

o Fixu= # form pgi = % and order the p,; in each group :

ﬁg,l S T S ﬁg,mg-

Also note pg 9 = 0.

o If Vg, pg,1 > m, no rejection and move to u = % If
Jg, pg,1 < m, continue and at least 1 rejection.

p
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More about the computation of W*
Start of the algorithm

@ Form all G-tuples j : )" j; = 2 and check if there is one j such
that Y mgpg, <m
o If there is one, at least 2 rejections and continue with G-tuples

of sum equal to 3.

o If not, 1 rejection and use a w, = pg ; suitable for 1 rejection,

2

and move to u = =.



More about the computation of W*

At rejection level k

@ Form all G-tuples j : )" j; = k and check if there is one j such
that Y mgpg , <m
o If there is one, at least k rejections and continue with G-tuples
of sum equal to k + 1.
o If not, k — 1 rejections and use a w,; = p, ;, suitable for k — 1
2

rejections, and move to u = =,

p
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lllustration of W*(u)

Oracle vs Data—driven weights
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m=10000, 1st group



lllustration of W*(u)

Oracle vs Data—driven weights
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The overfitting decreases in m
a = 0.05, 70% true null, 71 = m = 0.5

@ uy = jiand pp = 2.

@ X axis : [i.
1) .

o “lo y axis : the power of
° our procedure over
1 1000 replications

minus the power of
8 | BH.
o
-
Q 4
o
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