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Motivation
Grouped hypotheses

Context
The hypotheses have a group structure :
same distribution under H1 in each group

Examples :
The Adequate Yearly Progress data set where grouping schools
by size avoids a preference for large schools (Cai and Sun
2009).
An fMRI study where voxels from the front and the back of
the brain have different distribution (Cai and Sun 2009).
Grouping genes by pathway.
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Motivation
Examples from Cai and Sun 2009
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Topic of this talk :

Handle the group structure by weighting p-values (Holm 1979,
Genovese, Roeder, and Wasserman 2006, Blanchard and Roquain 2008, Hu,
Zhao, and Zhou 2010, Zhao and Zhang 2014, ...)

One procedure : IHW (Ignatiadis et al. 2016), first suggested in the
discussion section of Roquain and Van De Wiel 2009.

Here : philosophy of IHW and relation to previous work, and my
contributions on it, including a variant.
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The well-known BH procedure

Order p-values : p(1) ≤ · · · ≤ p(m)

Compute k̂ = max{k : p(k) ≤ αk/m}

Reject all pi ≤ α k̂
m

FDR control at level π0α when wPRDS

Useful other formulation
k̂
m = max{u : Ĝ (u) ≥ u} := I

(
Ĝ
)
where

Ĝ : u 7→ m−1
m∑
i=1

1{pi≤αu}, u ∈ [0, 1]
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An illustration of I
(
Ĝ
)
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Weighted-BH (WBH)

Take weights (wi )1≤i≤m s.t.
∑

i wi = m (weight vector), form

Ĝw : u 7→ m−1
m∑
i=1

1{pi≤αuwi}

and reject all pi ≤ αûwi with û = I
(
Ĝw

)
.

BH is a WBH procedure with wi = 1 ∀i .
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Weighted-Step-Up (WSU)
A generalization : non-linear weight functions

From Roquain and Van De Wiel 2009 :

Take W s.t. (Wi (u))i is a weight vector ∀u and

ĜW : u 7→ m−1
m∑
i=1

1{pi≤αuWi (u)}

is nondecreasing, then WSU (W ) = {i : pi ≤ αûWi (û)} with
û = I

(
ĜW

)
.
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Weighted-Step-Up (WSU)
A practical way to compute I

(
ĜW

)

No need to compute W (u) for each u !

∀k ∈ J1,mK, compute all pi
Wi (

k
m
)
and take qk the k-th smallest.

Let q0 = 0.
Then I

(
ĜW

)
= m−1 max{k ∈ J0,mK : qk ≤ α k

m}.

Now : what W to choose ?



From BH to oracle weights Optimal data-driven weights Numerical aspects

Optimal weighting

Unconditional model : ∀i , P (i ∈ H0) = π0.
C.d.f. under the alternative : Fi .
Consider the procedure Ru,w rejecting pi if pi ≤ αuwi .

Its power is P(m)
w (u) = (1− π0)m−1∑m

i=1 Fi (αuwi )

Maximize it for all u :

Definition of optimal weights :

W ∗(m)(u) = argmax
w :

∑m
i wi=m

P
(m)
w (u)
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Optimal weighting
Existence and uniqueness

Assume some regularity properties of the Fi (concavity,
differentiability, fulfilled in the gaussian 1-sided framework).

Theorem (Roquain and Van De Wiel 2009)

Then we have existence, uniqueness and continuity of W ∗(m), and
u 7→ uW

∗(m)
i (u) is non-decreasing.

Moreover, WSU
(
W ∗(m)

)
asymptotically enjoys FDR control at

level π0α and power optimality among all WBH procedures.
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Illustration of W ∗(u) as an argmax
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Optimal weighting
Main problem and resulting motivation

Fi unknown under the alternative ! So is W ∗.
Goal : estimate W ∗, obtain asymptotical results on FDR
control and power optimality.
Leads to data-driven optimal weighting and IHW.
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Data-driven optimal weighting

Assume that the p-values have uniform distribution under the
null.

The trick :
W ∗(u) is also the unique maximizer of

Gw (u) = E
[
Ĝw (u)

]
=
π0

m

m∑
i

(αuwi ∧ 1) + Poww (u)

the mean proportion of rejections done by Ru,w .
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Data-driven optimal weighting

=⇒ estimate W ∗ by maximizing Gw ’s empiric counterpart Ĝw .

Define Ŵ ∗(u) as :

Ŵ ∗(u) ∈ argmax
w≥0:

∑
i wi=m

Ĝw (u) = argmax
1
m

m∑
i=1

1pi≤αuwi

Optimal data-driven step-up procedure :

WSU
(
Ŵ ∗
)

(same as IHW)
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Data-driven optimal weighting
Assumptions

Assumptions of Roquain and Van De Wiel 2009.
G groups of sizes (mg )g≤G , where p-values have the same
distribution.
p-values are independent.

α > α∗ =
(
π0 + (1− π0)

∑
g fg (0+)

)−1
(Chi 2007).

mg

m −→
m→∞

πg > 0.

Proofs of the following results inspired by (Roquain and Van
De Wiel 2009), (Zhao and Zhang 2014) and (Hu, Zhao, and Zhou
2010).
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First main result

Theorem (FDR control)

FDP
(
WSU

(
Ŵ ∗
))

a.s.−→ π0α

FDR
(
WSU

(
Ŵ ∗
))
−→ π0α

Only at level α in Ignatiadis et al. 2016 but with less assumptions.
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Second main result

Theorem (power optimality)

lim
m→∞

Pow
(
WSU

(
Ŵ ∗
))

= lim
m→∞

Pow
(
WSU

(
W ∗(m)

))
and (corollary)

lim
m→∞

Pow
(
WSU

(
Ŵ ∗
))
≥ lim sup

m→∞
Pow

(
WSU

(
w (m)

))
for all sequences of determinisitic weights (w (m)).
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Stabilization variant

WSU
(
Ŵ ∗
)
overfits so with low signal we loose the FDR

control in finite sample.
We should prefer BH then.
=⇒ test if there is signal before choosing the procedure

Stabilized WSUβ
(
Ŵ ∗
)

sWSUβ
(
Ŵ ∗
)

:=

{
WSU

(
Ŵ ∗
)

if φβ = 1
BH if φβ = 0

with φβ = 1{Zm>qβ,m}, Zm =
√
m supu∈[0,1]

(
Ĝ
Ŵ ∗

(u)− αu
)
and

qβ,m the (1− β) quantile of Z0m.
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Stabilization variant

Main idea
Small signal =⇒ Zm close to Z0m in distribution, and

FDR
(
sWSUβ

(
Ŵ ∗
))

= E
[
φβ FDP

(
WSU

(
Ŵ ∗
))

+(1− φβ)FDP (BH)]

≤ E [φβ + FDP (BH)]

≤ P (Zm > qβ,m) + FDR (BH)

. P (Z0m > qβ,m) + FDR (BH)

≤ β + FDR (BH)

β → 0 for asymptotic control ?
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Stabilization variant
Result

Theorem

sWSUβ
(
Ŵ ∗
)
is asymptotically equivalent to WSU

(
Ŵ ∗
)
because

φβ
a.s.−→ 1 when m→∞, even if β = βm → 0 not too slowly

(βm ≥ exp
(
−m1−ν)).

Proof relies on the DKWM inequality (Massart 1990).
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About the computation of Ŵ ∗
Key ideas

Compute only Ŵ ∗(u) for u = 1
m ,

2
m , . . . ,

m−1
m , 1.

Max over w :
∑

mgwg = m⇔ max over w :
∑

mgwg ≤ m.

Fixing u, w 7→ Ĝw (u) discrete, only jumps at the pg,i
αu =⇒

search Ŵ ∗
g (u) as a

pg,ig
αu such that

∑
mg

pg,ig
αu ≤ m.

Ĝw (u) nondecreasing in u AND w : try to reject 1 hyp, then
2, then 3... for u = 1

m , when fail at k hyp, try to reject k hyp
for u = 2

m , ...
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FDR plot
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FDR plot
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Difference of power with BH
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Difference of power with BH

●
●

●

●
●

●

0 1000 2000 3000 4000 5000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

m

D
iff

er
en

ce
 o

f P
ow

er

Difference of power for mu bar=3

pi0=0.8, alpha=0.2

π1 = π2 = 0.5
µ1 = µ̄ and µ2 = 2µ̄.
x axis : m.
y axis : the power of
our procedure over
1000 replications
minus the power of
BH.



From BH to oracle weights Optimal data-driven weights Numerical aspects

Comparison with other methods

WSU
(
Ŵ ∗
)
and sWSU

(
Ŵ ∗
)
plotted.

Varying signal µ̄.
Oracle is the oracle method of Roquain and Van De Wiel 2009.
Zhao&Zhang is a an adapation of Zhao and Zhang 2014
without π̂0.
Many weighted-BH procedures plotted =⇒ grey area in the
figures.
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Comparison with other methods
α = 0.05, 70% true null, m1 = m2 = 500, β = 0.01
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Comparison with other methods
α = 0.05, 70% true null, m1 = m2 = 500, β = 0.01

µ1 = µ̄ and µ2 = 2µ̄.
1000 replications.
Overfitting in our method.
Good control for small and large µ̄ but not medium.
Choose smaller β ? (0.01 here)
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Current work
Go further than Ignatiadis et al. 2016

Good theoretical properties but with strong assumptions.
Notably, in real life π0 is a π0g depending on g .

Estimate Gw with a better estimator than Ĝw ?
Finite sample guarantees ?
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The end

Thank you for your attention !
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Comparison with other methods
α = 0.05, 70% true null, m1 = m2 = 500, β = 0.05
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Existence and uniqueness of oracle optimal weights
Assumptions

From Roquain and Van De Wiel 2009 :
Fi is strictly concave and continuous on [0, 1]

Fi has a derivative fi on (0, 1)

fi (0+) is constant for all i , same for fi (1−)

limy→fi (0+)
f −1
j (y)

f −1
i (y)

exists in [0,∞] for all i , j

These hypotheses are fulfilled in the gaussian 1-sided framework.
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Optimal weighting
Existence and uniqueness

Proof ideas
Compute an explicit formula using the Lagrange multiplier method :

L(λ,w) = m−1
m∑
i=1

Fi (αuwi )− λ

(
m∑
i=1

wg −m

)

gives us

W ∗
i (u) =

1
αu

f −1
i

(
Ψ−1(αu)

)
where Ψ(x) = m−1∑m

i=1 f
−1
i (x).
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Some notations

From now W ∗ is the asymptotic optimal weight when the Fg
are known :

W ∗(u) = argmax
w :

∑
πgwg=1

G∞w (u)

= argmax
w :

∑
πgwg=1

∑
g

πgDg (αuwg )

with Dg (·) = π0 max(·, 1) + (1− π0)Fg (·).
P∞W (u) = (1− π0)

∑
g πgFg (αuWg (u)).

û = I
(
Ĝ
Ŵ ∗

)
and u∗ = I (G∞W ∗).
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A chain of technical results

A first lemma

sup
u∈[0,1]

sup
w∈(R+)G

∣∣∣Ĝw (u)− G∞w (u)
∣∣∣ a.s.−→ 0

by Glivenko-Cantelli theorem and mg

m → πg .
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The main technical proposition

Proposition

sup
u∈[0,1]

∣∣∣ĜŴ ∗(u)− G∞W ∗(u)
∣∣∣ a.s.−→ 0

or, equivalently,

sup
u∈[0,1]

∣∣∣G∞
Ŵ ∗

(u)− G∞W ∗(u)
∣∣∣ a.s.−→ 0.
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The main technical proposition
Proof ideas

Manipulate with the triangular inequality and remove the
absolute values when able by using the maximality of Ĝ

Ŵ ∗
(u)

and G∞W ∗(u)

Problem
They are not maxima on the same sets :
Km = {w : m−1∑mgwg = 1} versus K∞ = {w :

∑
πgwg = 1}
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The main technical proposition
Proof ideas

We introduce two shifts δ(u) =
∑
πgŴ

∗
g (u)− 1 and

δ′(u) =
∑ mg

m W ∗
g (u)− 1.

Then we form shifted weights Ŵ∼(u) = Ŵ ∗(u)− δ(u) ∈ K∞

and W∼(u) = W ∗(u)− δ′(u) ∈ Km.
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The main technical proposition
Final ideas

Use that
∣∣∣G∞

Ŵ∼
(u)− G∞W ∗(u)

∣∣∣ = G∞W ∗(u)− G∞
Ŵ∼

(u).

End up with

sup
u

∣∣∣G∞
Ŵ ∗

(u)− G∞W ∗(u)
∣∣∣ ≤ sup

u

(
ĜW∼(u)− Ĝ

Ŵ ∗
(u)
)

+ ζm

for some ζm
a.s.−→ 0.

Use that ĜW∼(u)− Ĝ
Ŵ ∗

(u) ≤ 0. �
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The second important proposition

Proposition

û
a.s.−→

m→∞
u∗

from which Ĝ
Ŵ ∗

(û)
a.s.−→ G∞W ∗(u

∗) because Ĝ
Ŵ ∗

(û) = û and
G∞W ∗(u

∗) = u∗.

Note Xm = supu∈[0,1]
∣∣∣ĜŴ ∗

(u)− G∞W ∗(u)
∣∣∣ a.s.→ 0, take a δ in (0, u∗),

note u0 = u∗ − δ and for all δ′ ≥ δ, u′ = u∗ + δ′.
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The second important proposition
Proof

sδ = maxδ′≥δ (G∞W ∗(u
′)− u′) < 0 because if sδ = 0 it would

contradict u∗ maximality.

supδ′≥δ

(
Ĝ
Ŵ ∗

(u′)− u′
)
≤ sδ + Xm → sδ < 0

So when m→∞ we must have û < u∗ + δ.
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The second important proposition
Proof

G∞W ∗(u
0) ≥ G∞w (u0) with w = W ∗(u∗) by maximality.

G∞w (u0) = G∞w (u0)
u0 u0 > G∞w (u∗)

u∗ u0 = u0 by strict concavity.

Ĝ
Ŵ ∗

(u0)− u0 ≥ G∞W ∗(u
0)− u0 − Xm → G∞W ∗(u

0)− u0 > 0.
So when m→∞ we must have û > u∗ − δ. �
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Third and last proposition

We have shown that Ĝ
Ŵ ∗

(û)
a.s.−→ u∗, that is for the denominator of

the FDP. Showing that the numerator converges to π0αu
∗ is

straightforward after this :

Proposition

Ŵ ∗(û)
a.s.−→W ∗(u∗),

or, equivalently,
Ŵ∼(û)

a.s.−→W ∗(u∗).



From BH to oracle weights Optimal data-driven weights Numerical aspects

Third and last proposition
Proof ideas

One can show with the previous results and the triagular
inequality that

∣∣∣G∞
Ŵ∼(û)

(u∗)− G∞W ∗(u
∗)
∣∣∣ a.s.−→ 0.

By contradiction, if Ŵ∼(û)
a.s.9 W ∗(u∗) then we find a

w l 6= W ∗(u∗) maximizing G∞w (u∗) but W ∗(u∗) is unique. �
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Optimality in power
Proof ideas

First, Pow
(
Ŵ ∗
)

= E
[
P̂
Ŵ ∗

(û)
]
where P̂W (u) is m−1 times

the number of true alternative rejected.
P̂
Ŵ ∗

(û)
a.s.−→ P∞W ∗(u

∗) and P̂W ∗(m)(û)
a.s.−→ P∞W ∗(u

∗).

For each limit point for Pow(w (m)) there is a limit point w for
w (m).
û(m

′′) a.s.−→ I (G∞w ) and then

P̂w (m′′)

(
û(m

′′)
)

a.s.−→ P∞w (I (G∞w )) ≤ P∞W ∗ (I (G∞w )) ≤
P∞W ∗(u

∗). �
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More about the computation of Ŵ ∗
Start of the algorithm

Fix u = 1
m , form p̃gi =

pgi
αu and order the p̃gi in each group :

p̃g ,1 ≤ · · · ≤ p̃g ,mg .

Also note p̃g ,0 = 0.
If ∀g , p̃g ,1 > m, no rejection and move to u = 2

m . If
∃g , p̃g ,1 ≤ m, continue and at least 1 rejection.
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More about the computation of Ŵ ∗
Start of the algorithm

Form all G-tuples j :
∑

jg = 2 and check if there is one j such
that

∑
mg p̃g ,jg ≤ m

If there is one, at least 2 rejections and continue with G-tuples
of sum equal to 3.
If not, 1 rejection and use a wg = p̃g ,jg suitable for 1 rejection,
and move to u = 2

m .
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More about the computation of Ŵ ∗
At rejection level k

Form all G-tuples j :
∑

jg = k and check if there is one j such
that

∑
mg p̃g ,jg ≤ m

If there is one, at least k rejections and continue with G-tuples
of sum equal to k + 1.
If not, k − 1 rejections and use a wg = p̃g ,jg suitable for k − 1
rejections, and move to u = 2

m .
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Illustration of Ŵ ∗(u)
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Illustration of Ŵ ∗(u)
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The overfitting decreases in m
α = 0.05, 70% true null, π1 = π2 = 0.5

0.5 1.0 1.5 2.0 2.5 3.0

0.
01

0.
03

0.
05

m=100
m=200
m=300
m=400
m=500

µ1 = µ̄ and µ2 = 2µ̄.
x axis : µ̄.
y axis : the power of
our procedure over
1000 replications
minus the power of
BH.
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