Step-up procedure with data-driven optimal weights for grouped hypotheses

Guillermo Durand LPMA

MCP 2017

22/06/2017

Motivation Grouped hypotheses

Context

The hypotheses have a group structure : same distribution under \mathcal{H}_1 in each group

Examples :

- The Adequate Yearly Progress data set where grouping schools by size avoids a preference for large schools (Cai and Sun 2009).
- An fMRI study where voxels from the front and the back of the brain have different distribution (Cai and Sun 2009).
- Grouping genes by pathway.

Motivation Examples from Cai and Sun 2009

Topic of this talk :

Handle the group structure by weighting p-values (Holm 1979, Genovese, Roeder, and Wasserman 2006, Blanchard and Roquain 2008, Hu, Zhao, and Zhou 2010, Zhao and Zhang 2014, ...)

One procedure : IHW (Ignatiadis et al. 2016), first suggested in the discussion section of Roquain and Van De Wiel 2009.

Here : philosophy of IHW and relation to previous work, and my contributions on it, including a variant.

Table of contents

Table of contents

2 Optimal data-driven weights

The well-known BH procedure

- Order p-values : $p_{(1)} \leq \cdots \leq p_{(m)}$
- Compute $\hat{k} = \max\{k : p_{(k)} \le \alpha k/m\}$
- Reject all $p_i \leq \alpha \frac{\hat{k}}{m}$
- FDR control at level $\pi_0 \alpha$ when wPRDS

Useful other formulation

$$rac{\hat{k}}{m} = \max\{u: \widehat{G}(u) \ge u\} := \mathcal{I}\left(\widehat{G}\right)$$
 where

$$\widehat{G}: u \mapsto m^{-1} \sum_{i=1}^m \mathbb{1}_{\{p_i \leq \alpha u\}}, u \in [0,1]$$

From BH to oracle weights

Optimal data-driven weights

Numerical aspects

An illustration of $\mathcal{I}(\widehat{G})$

Weighted-BH (WBH)

Take weights $(w_i)_{1 \le i \le m}$ s.t. $\sum_i w_i = m$ (weight vector), form

$$\widehat{G}_{w}: u \mapsto m^{-1} \sum_{i=1}^{m} \mathbb{1}_{\{p_i \leq \alpha u w_i\}}$$

and reject all $p_i \leq \alpha \hat{u} w_i$ with $\hat{u} = \mathcal{I}\left(\widehat{G}_w\right)$.

BH is a WBH procedure with $w_i = 1 \ \forall i$.

Weighted-Step-Up (WSU) A generalization : non-linear weight functions

From Roquain and Van De Wiel 2009 :

Take W s.t. $(W_i(u))_i$ is a weight vector $\forall u$ and

$$\widehat{G}_W: u \mapsto m^{-1} \sum_{i=1}^m \mathbb{1}_{\{p_i \leq \alpha u W_i(u)\}}$$

is nondecreasing, then WSU $(W) = \{i : p_i \leq \alpha \hat{u} W_i(\hat{u})\}$ with $\hat{u} = \mathcal{I}(\widehat{G}_W)$.

From BH to oracle weights

Optimal data-driven weights

Numerical aspects

No need to compute W(u) for each u !

$$\begin{split} \forall k \in \llbracket 1, m \rrbracket, \text{ compute all } \frac{p_i}{W_i(\frac{k}{m})} \text{ and take } q_k \text{ the } k\text{-th smallest.} \\ \text{Let } q_0 = 0. \\ \text{Then } \mathcal{I}\left(\widehat{G}_W\right) = m^{-1} \max\{k \in \llbracket 0, m \rrbracket: q_k \leq \alpha \frac{k}{m}\}. \end{split}$$

Now : what W to choose ?

Optimal weighting

- Unconditional model : $\forall i, \mathbb{P}(i \in \mathcal{H}_0) = \pi_0$.
- C.d.f. under the alternative : F_i .
- Consider the procedure $R_{u,w}$ rejecting p_i if $p_i \leq \alpha uw_i$.
- Its power is $P_w^{(m)}(u) = (1 \pi_0)m^{-1}\sum_{i=1}^m F_i(\alpha uw_i)$
- Maximize it for all *u* :

Definition of optimal weights :

$$W^{*(m)}(u) = \operatorname*{argmax}_{w:\sum_{i}^{m} w_{i}=m} P^{(m)}_{w}(u)$$

Optimal weighting Existence and uniqueness

Assume some regularity properties of the F_i (concavity, differentiability, fulfilled in the gaussian 1-sided framework).

Theorem (Roquain and Van De Wiel 2009)

Then we have existence, uniqueness and continuity of $W^{*(m)}$, and $u \mapsto uW_i^{*(m)}(u)$ is non-decreasing. Moreover, WSU $(W^{*(m)})$ asymptotically enjoys FDR control at level $\pi_0 \alpha$ and power optimality among all WBH procedures.

From BH to oracle weights

Optimal data-driven weights

Numerical aspects

Illustration of $W^*(u)$ as an argmax

Optimal weighting Main problem and resulting motivation

- F_i unknown under the alternative ! So is W^* .
- Goal : estimate *W**, obtain asymptotical results on FDR control and power optimality.
- Leads to data-driven optimal weighting and IHW.

Table of contents

Data-driven optimal weighting

• Assume that the p-values have uniform distribution under the null.

The trick :

 $\mathcal{W}^*(u)$ is also the unique maximizer of

$$G_w(u) = \mathbb{E}\left[\widehat{G}_w(u)\right] = \frac{\pi_0}{m} \sum_{i}^{m} (\alpha u w_i \wedge 1) + \mathsf{Pow}_w(u)$$

the mean proportion of rejections done by $R_{u,w}$.

Data-driven optimal weighting

 \implies estimate W^* by maximizing G_w 's empiric counterpart \widehat{G}_w .

Define
$$\widehat{W}^*(u)$$
 as :
 $\widehat{W}^*(u) \in \operatorname*{argmax}_{w \ge 0: \sum_i w_i = m} \widehat{G}_w(u) = \operatorname{argmax} \frac{1}{m} \sum_{i=1}^m \mathbb{1}_{p_i \le \alpha u w_i}$

Optimal data-driven step-up procedure :

 $\mathsf{WSU}\left(\widehat{W}^*\right)$

(same as IHW)

Data-driven optimal weighting Assumptions

- Assumptions of Roquain and Van De Wiel 2009.
- G groups of sizes $(m_g)_{g \leq G}$, where p-values have the same distribution.
- p-values are independent.

•
$$\alpha > \alpha^* = \left(\pi_0 + (1 - \pi_0) \sum_g f_g(0^+)\right)^{-1}$$
 (Chi 2007).
• $\frac{m_g}{m} \xrightarrow[m \to \infty]{} \pi_g > 0.$

Proofs of the following results inspired by (Roquain and Van De Wiel 2009), (Zhao and Zhang 2014) and (Hu, Zhao, and Zhou 2010).

First main result

Theorem (FDR control)

$$\begin{aligned} & \mathsf{FDP}\left(\mathsf{WSU}\left(\widehat{W}^*\right)\right) \stackrel{a.s.}{\longrightarrow} \pi_0 \alpha \\ & \mathsf{FDR}\left(\mathsf{WSU}\left(\widehat{W}^*\right)\right) \longrightarrow \pi_0 \alpha \end{aligned}$$

Only at level α in Ignatiadis et al. 2016 but with less assumptions.

Second main result

Theorem (power optimality)

$$\lim_{m \to \infty} \mathsf{Pow}\left(\mathsf{WSU}\left(\widehat{W}^*\right)\right) = \lim_{m \to \infty} \mathsf{Pow}\left(\mathsf{WSU}\left(W^{*(m)}\right)\right)$$

and (corollary)

$$\lim_{m \to \infty} \mathsf{Pow}\left(\mathsf{WSU}\left(\widehat{W}^*\right)\right) \geq \limsup_{m \to \infty} \mathsf{Pow}\left(\mathsf{WSU}\left(w^{(m)}\right)\right)$$

for all sequences of determinisitic weights $(w^{(m)})$.

Stabilization variant

- WSU (\$\warphi^*\$) overfits so with low signal we loose the FDR control in finite sample.
- We should prefer BH then.
- ullet \Longrightarrow test if there is signal before choosing the procedure

Stabilized WSU_β
$$(\widehat{W}^*)$$

sWSU_β $(\widehat{W}^*) := \begin{cases} WSU (\widehat{W}^*) & \text{if } \phi_\beta = 1 \\ BH & \text{if } \phi_\beta = 0 \end{cases}$
with $\phi_\beta = \mathbb{1}_{\{Z_m > q_{\beta,m}\}}, \ Z_m = \sqrt{m} \sup_{u \in [0,1]} \left(\widehat{G}_{\widehat{W}^*}(u) - \alpha u\right) \text{ and } q_{\beta,m}$ the $(1 - \beta)$ quantile of Z_{0m} .

Stabilization variant

Main idea

Small signal $\implies Z_m$ close to Z_{0m} in distribution, and

$$\begin{aligned} \mathsf{FDR}\left(\mathsf{sWSU}_{\beta}\left(\widehat{W}^{*}\right)\right) &= \mathbb{E}\left[\phi_{\beta}\,\mathsf{FDP}\left(\mathsf{WSU}\left(\widehat{W}^{*}\right)\right) \\ &+(1-\phi_{\beta})\,\mathsf{FDP}\left(\mathsf{BH}\right)\right] \\ &\leq \mathbb{E}\left[\phi_{\beta}+\mathsf{FDP}\left(\mathsf{BH}\right)\right] \\ &\leq \mathbb{P}\left(Z_{m}>q_{\beta,m}\right)+\mathsf{FDR}\left(\mathsf{BH}\right) \\ &\lesssim \mathbb{P}\left(Z_{0m}>q_{\beta,m}\right)+\mathsf{FDR}\left(\mathsf{BH}\right) \\ &\leq \beta+\mathsf{FDR}\left(\mathsf{BH}\right) \end{aligned}$$

 $\beta \rightarrow 0$ for asymptotic control ?

Stabilization variant Result

Theorem

sWSU_{$$\beta$$} (\widehat{W}^*) is asymptotically equivalent to WSU (\widehat{W}^*) because $\phi_{\beta} \xrightarrow{a.s.} 1$ when $m \to \infty$, even if $\beta = \beta_m \to 0$ not too slowly $(\beta_m \ge \exp(-m^{1-\nu})).$

Proof relies on the DKWM inequality (Massart 1990).

Table of contents

2 Optimal data-driven weights

About the computation of \widehat{W}^*

- Compute only $\widehat{W}^*(u)$ for $u = \frac{1}{m}, \frac{2}{m}, \dots, \frac{m-1}{m}, 1$.
- Max over $w : \sum m_g w_g = m \Leftrightarrow \max \text{ over } w : \sum m_g w_g \le m$.
- Fixing $u, w \mapsto \widehat{G}_w(u)$ discrete, only jumps at the $\frac{p_{g,i}}{\alpha u} \Longrightarrow$ search $\widehat{W}_g^*(u)$ as a $\frac{p_{g,i_g}}{\alpha u}$ such that $\sum m_g \frac{p_{g,i_g}}{\alpha u} \le m$.
- $\widehat{G}_w(u)$ nondecreasing in u AND w: try to reject 1 hyp, then 2, then 3... for $u = \frac{1}{m}$, when fail at k hyp, try to reject k hyp for $u = \frac{2}{m}$, ...

FDR plot

•
$$\pi_1 = \pi_2 = 0.5$$

•
$$\mu_1 = \overline{\mu}$$
 and $\mu_2 = 2\overline{\mu}$.

• x axis : m.

• y axis : the FDR of our procedure over 1000 replications.

FDR plot

•
$$\pi_1 = \pi_2 = 0.5$$

•
$$\mu_1 = \overline{\mu}$$
 and $\mu_2 = 2\overline{\mu}$.

•
$$\beta = 0.05$$
.

• y axis : the FDR of our procedure over 1000 replications.

Difference of power with BH

m pi0=0.8, alpha=0.2 • $\pi_1 = \pi_2 = 0.5$

•
$$\mu_1 = \overline{\mu}$$
 and $\mu_2 = 2\overline{\mu}$.

•
$$\beta = 0.05$$
.

• y axis : the power of our procedure over 1000 replications minus the power of BH.

Difference of power with BH

• $\pi_1 = \pi_2 = 0.5$

•
$$\mu_1 = \bar{\mu}$$
 and $\mu_2 = 2\bar{\mu}$.

x axis : m.

 y axis : the power of our procedure over 1000 replications minus the power of BH.

Comparison with other methods

• WSU
$$\left(\widehat{W}^*\right)$$
 and sWSU $\left(\widehat{W}^*\right)$ plotted.

- Varying signal $\bar{\mu}$.
- Oracle is the oracle method of Roquain and Van De Wiel 2009.
- Zhao&Zhang is a an adapation of Zhao and Zhang 2014 without $\hat{\pi}_0.$

Comparison with other methods $\alpha = 0.05$, 70% true null, $m_1 = m_2 = 500$, $\beta = 0.01$

Comparison with other methods $\alpha = 0.05$, 70% true null, $m_1 = m_2 = 500$, $\beta = 0.01$

- $\mu_1 = \overline{\mu}$ and $\mu_2 = 2\overline{\mu}$.
- 1000 replications.
- Overfitting in our method.
- \bullet Good control for small and large $\bar{\mu}$ but not medium.
- Choose smaller β ? (0.01 here)

Current work Go further than Ignatiadis et al. 2016

- Good theoretical properties but with strong assumptions.
- Notably, in real life π_0 is a π_{0g} depending on g.
- Estimate G_w with a better estimator than \widehat{G}_w ?
- Finite sample guarantees ?

Bibliography I

Blanchard, Gilles and Etienne Roquain (2008). "Two simple sufficient conditions for FDR control". In: Electronic journal of Statistics 2, pp. 963–992. Cai, T. Tony and Wenguang Sun (2009). "Simultaneous testing of grouped hypotheses: Finding needles in multiple haystacks". In: Journal of the American Statistical Association 104.488, pp. 1467–1481. Chi, Zhiyi (2007). "On the performance of FDR control: constraints and a partial solution". In: The Annals of Statistics 35.4, pp. 1409–1431. Genovese, Christopher R., Kathryn Roeder, and Larry Wasserman (2006). "False discovery control with p-value weighting". In: Biometrika, pp. 509-524. Holm, Sture (1979). "A simple sequentially rejective multiple test procedure". In: Scandinavian journal of statistics, pp. 65-70.

Bibliography II

- Hu, James X., Hongyu Zhao, and Harrison H. Zhou (2010). "False discovery rate control with groups". In: *Journal of the American Statistical Association* 105.491.
- Ignatiadis, Nikolaos et al. (2016). "Data-driven hypothesis weighting increases detection power in genome-scale multiple testing". In: Nature methods 13.7, pp. 577–580.
- Massart, Pascal (1990). "The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality". In: The Annals of Probability, pp. 1269–1283.
 - Roquain, Etienne and Mark A. Van De Wiel (2009). "Optimal weighting for false discovery rate control". In: *Electronic Journal* of Statistics 3, pp. 678–711.
- Zhao, Haibing and Jiajia Zhang (2014). "Weighted p-value procedures for controlling FDR of grouped hypotheses". In: *Journal of Statistical Planning and Inference* 151, pp. 90–106.

Thank you for your attention !

Comparison with other methods $\alpha = 0.05$, 70% true null, $m_1 = m_2 = 500$, $\beta = 0.05$

Existence and uniqueness of oracle optimal weights Assumptions

From Roquain and Van De Wiel 2009 :

- F_i is strictly concave and continuous on [0, 1]
- F_i has a derivative f_i on (0, 1)
- $f_i(0^+)$ is constant for all *i*, same for $f_i(1^-)$

•
$$\lim_{y \to f_i(0^+)} \frac{f_j^{-1}(y)}{f_i^{-1}(y)}$$
 exists in $[0,\infty]$ for all i,j

These hypotheses are fulfilled in the gaussian 1-sided framework.

Optimal weighting Existence and uniqueness

Proof ideas

Compute an explicit formula using the Lagrange multiplier method :

$$L(\lambda, w) = m^{-1} \sum_{i=1}^{m} F_i(\alpha u w_i) - \lambda \left(\sum_{i=1}^{m} w_g - m \right)$$

gives us

$$W_i^*(u) = \frac{1}{\alpha u} f_i^{-1} \left(\Psi^{-1}(\alpha u) \right)$$

where $\Psi(x) = m^{-1} \sum_{i=1}^{m} f_i^{-1}(x)$.

Some notations

• From now W^* is the asymptotic optimal weight when the F_g are known :

$$W^{*}(u) = \operatorname*{argmax}_{w:\sum \pi_{g}w_{g}=1} G^{\infty}_{w}(u)$$
$$= \operatorname*{argmax}_{w:\sum \pi_{g}w_{g}=1} \sum_{g} \pi_{g} D_{g}(\alpha u w_{g})$$

with $D_g(\cdot) = \pi_0 \max(\cdot, 1) + (1 - \pi_0)F_g(\cdot)$.

• $P_W^{\infty}(u) = (1 - \pi_0) \sum_g \pi_g F_g(\alpha u W_g(u)).$ • $\hat{u} = \mathcal{I}\left(\widehat{G}_{\widehat{W}^*}\right)$ and $u^* = \mathcal{I}(G_{W^*}^{\infty}).$

A chain of technical results

A first lemma

$$\sup_{u\in[0,1]}\sup_{w\in(\mathbb{R}^+)^G}\left|\widehat{G}_w(u)-G_w^\infty(u)\right|\xrightarrow{a.s.}0$$

by Glivenko-Cantelli theorem and $\frac{m_g}{m} \rightarrow \pi_g$.

The main technical proposition

Proposition

$$\sup_{u\in[0,1]}\left|\widehat{G}_{\widehat{W}^*}(u)-G^{\infty}_{W^*}(u)\right|\stackrel{a.s.}{\longrightarrow}0$$

or, equivalently,

$$\sup_{u\in[0,1]} \left| G_{\widehat{W}^*}^{\infty}(u) - G_{W^*}^{\infty}(u) \right| \stackrel{a.s.}{\longrightarrow} 0.$$

The main technical proposition Proof ideas

• Manipulate with the triangular inequality and remove the absolute values when able by using the maximality of $\widehat{G}_{\widehat{W}^*}(u)$ and $G^{\infty}_{W^*}(u)$

Problem

They are not maxima on the same sets : $K^m = \{w : m^{-1} \sum m_g w_g = 1\}$ versus $K^{\infty} = \{w : \sum \pi_g w_g = 1\}$

The main technical proposition Proof ideas

- We introduce two shifts $\delta(u) = \sum \pi_g \widehat{W}_g^*(u) 1$ and $\delta'(u) = \sum \frac{m_g}{m} W_g^*(u) 1$.
- Then we form shifted weights $\widehat{W}^{\sim}(u) = \widehat{W}^{*}(u) \delta(u) \in K^{\infty}$ and $W^{\sim}(u) = W^{*}(u) - \delta'(u) \in K^{m}$.

The main technical proposition Final ideas

• Use that
$$\left|G_{\widehat{W}^{\sim}}^{\infty}(u) - G_{W^*}^{\infty}(u)\right| = G_{W^*}^{\infty}(u) - G_{\widehat{W}^{\sim}}^{\infty}(u).$$

• End up with

$$\sup_{u} \left| G_{\widehat{W}^{*}}^{\infty}(u) - G_{W^{*}}^{\infty}(u) \right| \leq \sup_{u} \left(\widehat{G}_{W^{\sim}}(u) - \widehat{G}_{\widehat{W}^{*}}(u) \right) + \zeta_{m}$$

for some
$$\zeta_m \xrightarrow{a.s.} 0$$
.
• Use that $\widehat{G}_{W^{\sim}}(u) - \widehat{G}_{\widehat{W}^*}(u) \leq 0$. \Box

The second important proposition

Proposition

$$\hat{u} \xrightarrow[m \to \infty]{a.s.} u^*$$

from which $\widehat{G}_{\widehat{W}^*}(\hat{u}) \xrightarrow{a.s.} G^{\infty}_{W^*}(u^*)$ because $\widehat{G}_{\widehat{W}^*}(\hat{u}) = \hat{u}$ and $G^{\infty}_{W^*}(u^*) = u^*$.

Note $X_m = \sup_{u \in [0,1]} \left| \widehat{G}_{\widehat{W}^*}(u) - G_{W^*}^{\infty}(u) \right| \stackrel{\text{a.s.}}{\to} 0$, take a δ in $(0, u^*)$, note $u^0 = u^* - \delta$ and for all $\delta' \ge \delta$, $u' = u^* + \delta'$.

The second important proposition Proof

- $s_{\delta} = \max_{\delta' \ge \delta} (G_{W^*}^{\infty}(u') u') < 0$ because if $s_{\delta} = 0$ it would contradict u^* maximality.
- $sup_{\delta' \geq \delta}\left(\widehat{G}_{\widehat{W}^*}(u') u'\right) \leq s_{\delta} + X_m \rightarrow s_{\delta} < 0$
- So when $m \to \infty$ we must have $\hat{u} < u^* + \delta$.

The second important proposition Proof

- $\mathcal{G}^\infty_{\mathcal{W}^*}(u^0) \geq \mathcal{G}^\infty_w(u^0)$ with $w = \mathcal{W}^*(u^*)$ by maximality.
- $G^{\infty}_w(u^0) = \frac{G^{\infty}_w(u^0)}{u^0}u^0 > \frac{G^{\infty}_w(u^*)}{u^*}u^0 = u^0$ by strict concavity.
- $\widehat{G}_{\widehat{W}^*}(u^0) u^0 \geq G^{\infty}_{W^*}(u^0) u^0 X_m \to G^{\infty}_{W^*}(u^0) u^0 > 0.$
- So when $m \to \infty$ we must have $\hat{u} > u^* \delta$. \square

Third and last proposition

We have shown that $\widehat{G}_{\widehat{W}^*}(\widehat{u}) \xrightarrow{a.s.} u^*$, that is for the denominator of the FDP. Showing that the numerator converges to $\pi_0 \alpha u^*$ is straightforward after this :

Proposition

$$\widehat{W}^*(\widehat{u}) \stackrel{a.s.}{\longrightarrow} W^*(u^*),$$

or, equivalently,

$$\widehat{W}^{\sim}(\widehat{u}) \stackrel{a.s.}{\longrightarrow} W^*(u^*).$$

Third and last proposition Proof ideas

- One can show with the previous results and the triagular inequality that $\left|G_{\widehat{W}^{\sim}(\hat{u})}^{\infty}(u^*) G_{W^*}^{\infty}(u^*)\right| \xrightarrow{a.s.} 0.$
- By contradiction, if $\widehat{W}^{\sim}(\widehat{u}) \xrightarrow{a.s.} W^{*}(u^{*})$ then we find a $w^{l} \neq W^{*}(u^{*})$ maximizing $G_{w}^{\sim}(u^{*})$ but $W^{*}(u^{*})$ is unique. \Box

Optimality in power Proof ideas

- First, $\operatorname{Pow}\left(\widehat{W}^*\right) = \mathbb{E}\left[\widehat{P}_{\widehat{W}^*}(\widehat{u})\right]$ where $\widehat{P}_W(u)$ is m^{-1} times the number of true alternative rejected.
- $\widehat{P}_{\widehat{W}^*}(\widehat{u}) \xrightarrow{a.s.} P^{\infty}_{W^*}(u^*) \text{ and } \widehat{P}_{W^{*(m)}}(\widehat{u}) \xrightarrow{a.s.} P^{\infty}_{W^*}(u^*).$
- For each limit point for Pow(w^(m)) there is a limit point w for w^(m).

•
$$\hat{\mu}^{(m'')} \xrightarrow{a.s.} \mathcal{I}(G_w^\infty)$$
 and then
• $\hat{P}_{(m'')} \left(\hat{\mu}^{(m'')}\right) \xrightarrow{a.s.} P^\infty \left(\mathcal{I}(G_\infty^\infty)\right) < P$

•
$$P_{w^{(m'')}}\left(\hat{u}^{(m')}\right) \xrightarrow{\mathfrak{sup}} P_{w}^{\infty}\left(\mathcal{I}\left(G_{w}^{\infty}\right)\right) \leq P_{W^{*}}^{\infty}\left(\mathcal{I}\left(G_{w}^{\infty}\right)\right) \leq P_{W^{*}}^{\infty}\left(u^{*}\right).$$

More about the computation of \widehat{W}^*

• Fix
$$u = \frac{1}{m}$$
, form $\tilde{p}_{gi} = \frac{p_{gi}}{\alpha u}$ and order the \tilde{p}_{gi} in each group :

$$\tilde{p}_{g,1} \leq \cdots \leq \tilde{p}_{g,m_g}.$$

Also note $\tilde{p}_{g,0} = 0$.

• If $\forall g, \tilde{p}_{g,1} > m$, no rejection and move to $u = \frac{2}{m}$. If $\exists g, \tilde{p}_{g,1} \leq m$, continue and at least 1 rejection.

More about the computation of \widehat{W}^*

- Form all G-tuples $\pmb{j}:\sum j_g=2$ and check if there is one \pmb{j} such that $\sum m_g \tilde{p}_{g,j_g} \leq m$
 - If there is one, at least 2 rejections and continue with G-tuples of sum equal to 3.
 - If not, 1 rejection and use a $w_g = \tilde{p}_{g,j_g}$ suitable for 1 rejection, and move to $u = \frac{2}{m}$.

More about the computation of \widehat{W}^* At rejection level k

- Form all G-tuples $j: \sum j_g = k$ and check if there is one j such that $\sum m_g \tilde{p}_{g,j_g} \leq m$
 - If there is one, at least k rejections and continue with G-tuples of sum equal to k + 1.
 - If not, k-1 rejections and use a $w_g = \tilde{p}_{g,j_g}$ suitable for k-1 rejections, and move to $u = \frac{2}{m}$.

u=k/m m=10000, 1st group

Oracle vs Data-driven weights

u=k/m m=10000, 2nd group

Optimal data-driven weights

Numerical aspects

The overfitting decreases in m = 0.05, 70% true null, $\pi_1 = \pi_2 = 0.5$

