# **Optimal data-driven weighting procedure with grouped hypotheses and** $\pi_0$ **-adaptation**

# G. Durand guillermo.durand@upmc.fr

Laboratoire de Probabilités, Statistique & Modélisation, UMR 8001 Sorbonne Université, Paris, France. arXiv 1710.01094

### Introduction

Weighting the *p*-values is a common strategy to improve the power of FDR controlling multiple testing procedures, see e.g. [2]. Later,  $\pi_0$ -adaption has been combined with weighting to gain more power [4]. However, finding an optimal procedure among all weighting strategies has only been addressed in [6], with only an oracle, non  $\pi_0$ -adaptive procedure. Recent works [5, 8] introduce data-driven weighting procedures for grouped hypotheses but do not solve completely the problem of optimality.

Here we present ADDOW (Adaptive Data-Driven Optimal Weighting), a new method that improves previous approaches. While ADDOW satisfies asymptotical FDR control, it satisfies a form of optimality by maximizing asymptotical power among all weighting procedures. The superiority of ADDOW is illustrated via numerical experiments.

### Main results

Let the following assumption:

 $\exists C \ge 1, \, \forall g, \, \bar{\pi}_{g,0} = C \pi_{g,0},$ 

which includes the consistent case (C = 1).

Theorem 1 (Asymptotic FDR control).

 $\lim_{m \to \infty} \text{FDR} (\text{ADDOW}) \le \alpha,$ 





# **Grouped hypotheses model**

We have:

G fixed groups of size of hypotheses (H<sub>g,1</sub>, H<sub>g,2</sub>,...), 1 ≤ g ≤ G, to test,
Corresponding p-values (p<sub>g,1</sub>, p<sub>g,2</sub>,...), 1 ≤ g ≤ G,
p<sub>g,i</sub> ~ U([0, 1]) if H<sub>g,i</sub> = 0 (true nulls),
p<sub>g,i</sub> ~ F<sub>g</sub> strictly concave if H<sub>g,i</sub> = 1: alternatives of the same groups are identically distributed.

# Asymptotic setting

• At each m, the groups have size  $m_g$ ,  $1 \le g \le G$ , where  $\sum_{g=1}^G m_g = m$  and  $\frac{m_g}{m} \to \pi_g > 0$ . •  $m_{g,1} = \sum_{i=1}^{m_g} H_{g,i}$  and  $m_{g,0} = m_g - m_{g,1}$  are such that  $\frac{m_{g,0}}{m_g} \to \pi_{g,0} > 0$  and  $\frac{m_{g,1}}{m_g} \to \pi_{g,1} > 0$ . • Weak dependence [7] in each group:  $\frac{1}{m_{g,0}} \sum_{i=1}^{m_g} \mathbb{1}_{\{p_{g,i} \le t, H_{g,i} = 0\}} \xrightarrow{a.s.} U(t) = t \land 1, t \ge 0,$  $\frac{1}{m_{g,1}} \sum_{i=1}^{m_g} \mathbb{1}_{\{p_{g,i} \le t, H_{g,i} = 1\}} \xrightarrow{a.s.} F_g(t), t \ge 0.$ 

## $\pi_0$ -estimation

Estimate  $\pi_{g,0}$  with  $\hat{\pi}_{g,0} \leq 1$  such that  $\hat{\pi}_{g,0} \xrightarrow{\mathbb{P}} \bar{\pi}_{g,0} \geq \pi_{g,0}$ , like the Storey estimator [7]:

$$\hat{\pi}_{g,0}(\lambda) = \frac{1 - \frac{1}{m_g} \sum_{i=1}^{m_g} \mathbbm{1}_{\{p_{g,i} \le \lambda\}} + \frac{1}{m}}{1 - \lambda}, \ \lambda \in (0, 1).$$

**Criticality:**  $\alpha > \alpha^*$  the critical alpha level (see [1]) depending on the  $\bar{\pi}_{g,0}$  and the  $f_g(0^+)$ .

and, under (1),

$$\lim_{m \to \infty} \text{FDR} (\text{ADDOW}) = \frac{\alpha}{C}.$$

**Theorem 2** (Asymptotic Power optimality). Under (1), for any sequence of random weight functions  $(\widehat{W})_{m\geq 1}$ , such that  $\widehat{W}: [0,1] \to K^m$  and  $\widehat{G}_{\widehat{W}}$  is nondecreasing,

$$\lim_{m \to \infty} \operatorname{Pow} \left( \operatorname{ADDOW} \right) \ge \limsup_{m \to \infty} \operatorname{Pow} \left( \operatorname{MWBH} \left( \widehat{W} \right) \right)$$

**Corollary 1** (IHW). Assume that  $\pi_{g,0}$  do not depend on  $g: \pi_{g,0} = \pi_0$ ,  $\forall g$ . Then,

$$\lim_{m \to \infty} \text{FDR} (\text{IHW}) = \pi_0 \alpha,$$

and for any sequence of random weight functions  $(\widehat{W})_{m\geq 1}$  such that  $\widehat{W}:[0,1] \to K_{NE}^m$  and  $\widehat{G}_{\widehat{W}}$  is nondecreasing, we have

 $\lim_{m \to \infty} \operatorname{Pow}\left(\mathrm{IHW}\right) \ge \limsup_{m \to \infty} \operatorname{Pow}\left(\mathrm{MWBH}\left(\widehat{W}\right)\right).$ 

# Numerical experiments

2 groups in one-sided Gaussian framework,  $\mu_1 = \bar{\mu}$  and  $\mu_2 = 2\bar{\mu}$ ,  $m_1 = m_2 = 2000$ ,  $m_{1,0}/m_1 = 0.7$  and  $m_{2,0}/m_2 = 0.8$ . No  $\pi_0$ -adaptation in Group 1:  $\hat{\pi}_{g,0} = 1$ . Oracle  $\pi_0$ -adaptation in Groups 2 and 3:  $\hat{\pi}_{g,0} = \pi_{g,0}$ .

FDR plot

**Leading example:** the Gaussian one-sided framework where the *p*-values are derived from a test statistic  $X_{g,i}$  that follows  $\mathcal{N}(0,1)$  if  $H_{g,i} = 0$  and  $\mathcal{N}(\mu_g, 1)$ ,  $\mu_g > 0$ , if  $H_{g,i} = 1$ . Letting  $p_{g,i} = \overline{\Phi}(X_{g,i})$  we get  $F_g(\cdot) = \overline{\Phi}(\overline{\Phi}^{-1}(\cdot) - \mu_g)$  which is strictly convex,  $\alpha^* = 0$  and **consistency** of Storey estimators if: •  $\lambda = \lambda_m \to 1$  slow enough,

• the  $X_{g,i}$  are mutually independent.

#### From BH to multi-weighting

Let

 $\widehat{G}: u \mapsto m^{-1} \sum_{g=1}^{G} \sum_{i=1}^{m_g} \mathbb{1}_{\{p_{g,i} \le \alpha u\}},$ 

and  $\hat{u} = \max\{u \in [0,1], \hat{G}(u) \ge u\}$ , then the BH procedure rejects all  $p_{g,i} \le \alpha \hat{u}$ , see Figure 1.



Figure 1: The BH procedure applied to a set of 10 *p*-values. Right plot: the *p*-values and the function  $k \rightarrow \alpha k/m$ . Left plot:



**Figure 2:** FDR against  $\bar{\mu}$ . Group 1 in black; Group 2 in green; Group 3 in red. The type of procedure is MWBH  $(W_{or}^*)$  (squares); ADDOW (triangles); Pro2 (disks); HZZ (diamonds) and finally BH/ABH (crosses). Horizontal lines:  $\alpha$  and  $\pi_0 \alpha$  levels.



#### identity function and G. Each plot shows that 6 p-values are rejected.

Following [6], we generalize BH into a multi-weighted BH (MWBH) procedure by introducing a weight function  $W : [0, 1] \rightarrow \mathbb{R}^G_+$ , which can be random, such that the following:

$$\widehat{G}_W: u \mapsto m^{-1} \sum_{g=1}^{G} \sum_{i=1}^{m_g} \mathbb{1}_{\{p_{g,i} \le \alpha u W_g(u)\}},$$

is nondecreasing. The MWBH(W) procedure rejects all  $p_{g,i} \leq \alpha \hat{u}_W W_g(\hat{u}_W)$ , where  $\hat{u}_W = \max\{u \in [0,1], \hat{G}_W(u) \geq u\}$ .

# ADDOW

ADDOW is  $MWBH(\widehat{W}^*)$  where  $\widehat{W}^*$  is an adaptive data-driven optimal weight function:

$$\forall u \in [0,1], \widehat{W}^*(u) \in \operatorname*{arg\,max}_{w \in K^m} \widehat{G}_w(u), \ K^m = \Big\{ w \in \mathbb{R}^G_+ : \sum_g \frac{m_g}{m} \widehat{\pi}_{g,0} w_g \le 1 \Big\}.$$

#### MAIN IDEA: MAXIMIZE REJECTIONS ON A WELL-CHOSEN WEIGHT SPACE Remark 1. ADDOW depends on the $\hat{\pi}_{g,0}$ which makes it a class of procedure. If $\hat{\pi}_{g,0} = 1$ we recover IHW. Remark 2. ADDOW can be generalized by using the LCM of the e.c.d.f. instead.

**Figure 3:**  $Pow(\cdot) - Pow(BH)$  against  $\overline{\mu}$ . Same legend as Figure 2

#### References

[1] Z. Chi. On the performance of fdr control: constraints and a partial solution. The Annals of Statistics, 35(4):1409–1431, 2007.

[2] C. R. Genovese, K. Roeder, and L. Wasserman. False discovery control with p-value weighting. *Biometrika*, pages 509–524, 2006.

[3] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics, pages 65–70, 1979.

[4] J. X. Hu, H. Zhao, and H. H. Zhou. False discovery rate control with groups. Journal of the American Statistical Association, 105(491), September 2010.

[5] N. Ignatiadis, B. Klaus, J. B. Zaugg, and W. Huber. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. *Nature methods*, 13(7):577–580, 2016.

[6] E. Roquain and M. A. Van De Wiel. Optimal weighting for false discovery rate control. *Electronic Journal of Statistics*, 3:678–711, 2009.

[7] J. D. Storey, J. E. Taylor, and D. Siegmund. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 66(1):187–205, 2004.

[8] H. Zhao and J. Zhang. Weighted p-value procedures for controlling fdr of grouped hypotheses. *Journal of Statistical Planning and Inference*, 151:90–106, 2014.