
Optimal data-driven weighting procedure
with grouped hypotheses and π0-adaptation
G. Durand guillermo.durand@upmc.fr
Laboratoire de Probabilités, Statistique & Modélisation, UMR 8001 Sorbonne Université, Paris, France.
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Introduction
Weighting the p-values is a common strategy to improve the power of FDR controlling multiple testing pro-
cedures, see e.g. [2]. Later, π0-adaption has been combined with weighting to gain more power [4]. However,
finding an optimal procedure among all weighting strategies has only been addressed in [6], with only an ora-
cle, non π0-adaptive procedure. Recent works [5, 8] introduce data-driven weighting procedures for grouped
hypotheses but do not solve completely the problem of optimality.
Here we present ADDOW (Adaptive Data-Driven Optimal Weighting), a new method that improves previous
approaches. While ADDOW satisfies asymptotical FDR control, it satisfies a form of optimality by maxi-
mizing asymptotical power among all weighting procedures. The superiority of ADDOW is illustrated via
numerical experiments.

Grouped hypotheses model
We have:

•G fixed groups of size of hypotheses
(
Hg,1, Hg,2, . . .

)
, 1 ≤ g ≤ G, to test,

• Corresponding p-values
(
pg,1, pg,2, . . .

)
, 1 ≤ g ≤ G,

• pg,i ∼ U([0, 1]) if Hg,i = 0 (true nulls),

• pg,i ∼ Fg strictly concave if Hg,i = 1: alternatives of the same groups are identically distributed.

Asymptotic setting

•At each m, the groups have size mg, 1 ≤ g ≤ G, where
∑G
g=1mg = m and mg

m → πg > 0.

•mg,1 =
∑mg

i=1Hg,i and mg,0 = mg −mg,1 are such that mg,0

mg
→ πg,0 > 0 and mg,1

mg
→ πg,1 > 0.

•Weak dependence [7] in each group: 1
mg,0

∑mg

i=1 1{pg,i≤t,Hg,i=0}
a.s.−→ U(t) = t ∧ 1, t ≥ 0,

1
mg,1

∑mg

i=1 1{pg,i≤t,Hg,i=1}
a.s.−→ Fg(t), t ≥ 0.

π0-estimation

Estimate πg,0 with π̂g,0 ≤ 1 such that π̂g,0
P−→ π̄g,0 ≥ πg,0, like the Storey estimator [7]:

π̂g,0(λ) =
1− 1

mg

∑mg

i=1 1{pg,i≤λ} + 1
m

1− λ
, λ ∈ (0, 1).

Criticality: α > α∗ the critical alpha level (see [1]) depending on the π̄g,0 and the fg(0+).

Leading example: the Gaussian one-sided framework where the p-values are derived from a test statistic
Xg,i that follows N (0, 1) if Hg,i = 0 and N (µg, 1), µg > 0, if Hg,i = 1. Letting pg,i = Φ̄(Xg,i) we get
Fg(·) = Φ̄

(
Φ̄−1(·)− µg

)
which is strictly convex, α∗ = 0 and consistency of Storey estimators if:

• λ = λm→ 1 slow enough,

• the Xg,i are mutually independent.

From BH to multi-weighting
Let

Ĝ : u 7→ m−1
G∑
g=1

mg∑
i=1

1{pg,i≤αu},

and û = max{u ∈ [0, 1], Ĝ(u) ≥ u}, then the BH procedure rejects all pg,i ≤ αû, see Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: The BH procedure applied to a set of 10 p-values. Right plot: the p-values and the function k → αk/m. Left plot:
identity function and Ĝ. Each plot shows that 6 p-values are rejected.

Following [6], we generalize BH into a multi-weighted BH (MWBH) procedure by introducing a weight
function W : [0, 1]→ RG+, which can be random, such that the following:

ĜW : u 7→ m−1
G∑
g=1

mg∑
i=1

1{pg,i≤αuWg(u)},

is nondecreasing. The MWBH(W ) procedure rejects all pg,i ≤ αûWWg(ûW ), where ûW = max{u ∈
[0, 1], ĜW (u) ≥ u}.

ADDOW
ADDOW is MWBH(Ŵ ∗) where Ŵ ∗ is an adaptive data-driven optimal weight function:

∀u ∈ [0, 1], Ŵ ∗(u) ∈ arg max
w∈Km

Ĝw(u), Km =
{
w ∈ RG+ :

∑
g

mg

m
π̂g,0wg ≤ 1

}
.

MAIN IDEA: MAXIMIZE REJECTIONS ON A WELL-CHOSEN WEIGHT SPACE
Remark 1. ADDOW depends on the π̂g,0 which makes it a class of procedure. If π̂g,0 = 1 we recover IHW.
Remark 2. ADDOW can be generalized by using the LCM of the e.c.d.f. instead.

Main results
Let the following assumption:

∃C ≥ 1, ∀g, π̄g,0 = Cπg,0, (1)

which includes the consistent case (C = 1).

Theorem 1 (Asymptotic FDR control).

lim
m→∞

FDR (ADDOW) ≤ α,

and, under (1),
lim

m→∞
FDR (ADDOW) =

α

C
.

Theorem 2 (Asymptotic Power optimality). Under (1), for any sequence of random weight functions
(Ŵ )m≥1, such that Ŵ : [0, 1]→ Km and Ĝ

Ŵ
is nondecreasing,

lim
m→∞

Pow (ADDOW) ≥ lim sup
m→∞

Pow
(

MWBH
(
Ŵ
))

.

Corollary 1 (IHW). Assume that πg,0 do not depend on g: πg,0 = π0, ∀g. Then,

lim
m→∞

FDR (IHW) = π0α,

and for any sequence of random weight functions (Ŵ )m≥1 such that Ŵ : [0, 1] → Km
NE and Ĝ

Ŵ
is nonde-

creasing, we have
lim

m→∞
Pow (IHW) ≥ lim sup

m→∞
Pow

(
MWBH

(
Ŵ
))

.

Numerical experiments
2 groups in one-sided Gaussian framework, µ1 = µ̄ and µ2 = 2µ̄, m1 = m2 = 2000, m1,0/m1 = 0.7 and
m2,0/m2 = 0.8. No π0-adaptation in Group 1: π̂g,0 = 1. Oracle π0-adaptation in Groups 2 and 3: π̂g,0 = πg,0.
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Figure 2: FDR against µ̄. Group 1 in black; Group 2 in green; Group 3 in red. The type of procedure is MWBH (W ∗
or) (squares);

ADDOW (triangles); Pro2 (disks); HZZ (diamonds) and finally BH/ABH (crosses). Horizontal lines: α and π0α levels.
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Difference of power w.r.t. BH

Figure 3: Pow(·)− Pow(BH) against µ̄. Same legend as Figure 2
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