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Exploratory analysis in multiple testing

Search interesting hypotheses that will be cautiously investigated after.
Desired properties, as stated by [Goeman and Solari (2011)]:

I Mildness: allows some false positives
I Flexibility: the procedure does not prescribe, but advise
I Post hoc: take decisions on the procedure after seing the data

Example of post hoc decision
GWAS study with 106 genetic variants, select the 157 smallest p-values
after seing a gap between the 157th and 158th smallest p-values.
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Exploratory analysis in multiple testing

[Goeman and Solari (2011)]

This reverses the traditional roles of the user and procedure in multiple
testing. Rather than, as in FWER-or FDR-based methods, to let the user
choose the quality criterion, and to let the procedure return the collection
of rejected hypotheses, the user chooses the collection of rejected
hypotheses freely, and the multiple testing procedure returns the
associated quality criterion.

FWER(R) = P(|R ∩H0| > 0), FDR(R) = E
[
|R∩H0|
|R|∨1

]
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Post hoc and replication crisis

Replication crisis: many results poorly interpretable and non reproductible

Post hoc done wrong: p-hacking
I Pre-selecting variables that seem significant, exclude others from

experiment
I Theoretical results no longer hold

Example
I GWAS study with 106 genetic variants
I Apply the Bonferroni procedure (FWER control) over the 1000

smallest p-values and report the result
I Problem: Bonferroni correction: α/1000 instead of α/106!
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Selective inference against replication crisis

Selective inference: methods that account for a post hoc selection step
and still provide statistical guarantees.

1 Conditionally to the selection event (e.g. Lasso selected features)
[Fithian et al. (2017), Lee et al. (2016), and Tibshirani et al. (2016)]

2 Simultaneously over all possible selection events [Goeman and Solari (2011),
Berk et al. (2013), and Blanchard et al. (2020)]

← The context of this work
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Multiple testing setting

I Data X ∈ (X ,X) with X ∼ P ∈ P a collection of distributions, P
unknown

I m null hypotheses H0,i on P which are subsets of P
I m is large!
I H0 = {i : P ∈ H0,i}: i ∈ H0 ⇔ H0,i is true
I m p-values pi = pi (X ) such that pi � U([0, 1]) if i ∈ H0

I Each pi provides an α level test : PP∈H0,i (pi ≤ α) ≤ α
I Definition: for every subset of hypothese S: V (S) = |S ∩H0|

Classic MT theory: form a rejection set R with a guarantee on V (R)
I FWER(R) = P(V (R) > 0)
I FDR(R) = E

[
V (R)
|R|∨1

]
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Our goal: post hoc inference
Or simultaneous inference

Confidence bounds on any set of selected variables
A confidence bound is a (random) function V̂ such that

P
(
∀S ⊂ Nm,V (S) ≤ V̂ (S)

)
≥ 1− α

I Hence for any selected Ŝ, P
(
V (Ŝ) ≤ V̂ (Ŝ)

)
≥ 1− α holds

I Originates from [Genovese and Wasserman (2006) and Meinshausen (2006)]

I A guarantee over any selected set instead of a rejected set: advise
some Ŝ instead of prescribe one R

I The MT paradigm is reversed

G. Durand Background 9 / 37



BNR formalism
[Blanchard et al. (2020)]

Key concept: reference family
I R = (Rk , ζk) (random) such that Joint Error Rate (JER) control:

JER(R) = P (∃k, |Rk ∩H0| > ζk) ≤ α

I Conversely, P (∀k, |Rk ∩H0| ≤ ζk) ≥ 1− α
I Confidence bound only on the members of R
I =⇒ Derivation of a global confidence bound by interpolation

G. Durand Background 10 / 37



BNR formalism
[Blanchard et al. (2020)]

Two different bounds
I V ∗R(S) = max {|S ∩ A|, ∀k, |Rk ∩ A| ≤ ζk} optimal but difficult to

compute
I VR(S) = mink (ζk + |S \ Rk |) ∧ |S| easy to compute

Main idea: the only information on H0 is that H0 ∈ {A, ∀k, |Rk ∩ A| ≤ ζk}

|S ∩ A| = |(S ∩ Rk) ∩ A|+ |(S \ Rk) ∩ A|
≤ |Rk ∩ A|+ |S \ Rk |
=⇒ V ∗R(S) ≤ VR(S)
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BNR formalism
A flexible and unified approach

I Compatible with previous works, like the closed testing approach of
[Goeman and Solari (2011)]

I BNR approach: ζk = k − 1 and find Rk = {i : pi < tk} such that JER
control. Example: tk = αk/m (Simes inequality)

I JER control becomes “simultaneous k-FWER control”
I Property: if Rk nested, then VR = V ∗R

G. Durand Background 12 / 37



Table of contents

1. Motivations

2. Background

3. New families

4. Simulations

5. Conclusion

G. Durand New families 13 / 37



Table of contents

1. Motivations

2. Background

3. New families
Spatial structure
New regions
Bound computation
Bounding the regions

4. Simulations

5. Conclusion

G. Durand New families | Spatial structure 14 / 37



Spatial structure

Informal assumption
The signal is localized in some spatially structured regions, with, possibly,
different levels (e.g. active SNPs into genes into chromosomes)

[Meijer et al. (2015)]

Considering the data at the region level is not only useful because these
regions can be the fundamental units of interest, but also because these
regions can have an increased signal-to-noise-ratio

I Accordingly, find adapted new reference families
I We want V ∗R to be easy to compute
I Our approach: deterministic Rk ’s capturing spatial hierarchy, estimate

the true nulls inside them (i.e. ζk random)
I opposite of [Blanchard et al. (2020)]
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Forest structure

I ∀k, k ′ ∈ K, Rk ∩ Rk′ ∈ {Rk ,Rk′ ,∅}
I Includes nested families or totally disjoint families
I Accommodates to different levels of signal localization through the

different depths of the nodes

R1

R2 R3 R4

R5 R6 R7

R8

R9
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Forest structure
Important property

Property
There is a partition (Ln)1≤n≤N of Nm (the leaves) such that for each
k ∈ K, there exists some (i , j) with 1 ≤ i ≤ j ≤ N and Rk = Li :j , where
we denote

Li :j =
⋃

i≤n≤j
Ln

Identification:

R = (Rk , ζk)k∈K or R = (Li :j , ζi ,j)(i ,j)∈K

=⇒ leaves represent the thinnest division possible of the structure
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Forest structure
Other important property

I Each forest structure can be completed to includes all leaves
I For an added leaf Li :i , just state ζi ,j = |Li :i |

R1

R2 R3 R4

L2 R5 R6 R7

R8

L6 R9

L8
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New interpolation bounds
Goal: compute V ∗R easily with forest structure

Definition
For any q ≤ K = |K|,

Ṽ q
R(S) = min

Q⊂K,|Q|≤q

(∑
k∈Q

ζk ∧ |S ∩ Rk |+
∣∣∣∣S \ ⋃

k∈Q
Rk

∣∣∣∣
)
,

and
ṼR(S) = Ṽ K

R (S).

Property

V ∗R(S) ≤ ṼR(S) ≤ Ṽ K−1
R (S) ≤ · · · ≤ Ṽ 2

R(S) ≤ Ṽ 1
R(S) = VR(S)
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Main results
Compute V ∗R easily with forest structure

Theorem

V ∗R(S) = ṼR(S)

More precisely,
V ∗R(S) = Ṽ `

R(S),

with ` = number of leaves (without completion).

Proof by construction =⇒ computation algorithm

Corollary
` = 1 for nested families and BNR property is recovered
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Main results
Compute V ∗R easily with forest structure

Corollary
There is a simple and efficient algorithm to compute ṼR if R is complete
(O(Hm) complexity).

Lemma
Completing the family does not change V ∗R and ṼR.

Corollary
There is a simple algorithm to compute V ∗R(S) by:

1 Completing the family
2 Travel across the forest from the leaves

Note: all of the above does not depend on the choice of the ζk and works
for random Rk .
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Forest algorithm

R1

R2 R3 R4

L2 R5 R6 R7

R8

L6 R9

L8
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True nulls estimation inside regions
That is, ζk computation

I K deterministic regions, let C =
√

1
2 log

(
K
α

)
I ζk = |Rk | ∧mint∈[0,1)

⌊
C

2(1−t) +
(

C2

4(1−t)2 +
∑

i∈Rk
1{pi>t}

1−t

)1/2⌋2

I Comes from carefully handling the DKWM inequality [Dvoretzky et al.
(1956) and Massart (1990)]

I Requires independence!
I Replace mint∈[0,1) and t above by min0≤`≤s and p(`) for practical

usage =⇒ computation of (ζk)k is also O(Hm) complex
I α/K instead of α in C : union bound
I Dependence on α (and to K !) only through a log
I ζk > 0 (entry cost)
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Comparison of 3 bounds
Simes bound of BNR, and 2 new

I Vtree and Vpart, from a complete binary tree or only the partition of
leaves

I Signal in adjacent leaves, good performance of Vtree expected despite
worst K

I Parameters: signal µ̄ and signal proportion in active leaves r

L1:8

L1:4 L5:8

L1:2 L3:4 L5:6 L7:8

L1 L2 L3 L4 L5 L6 L7 L8Partition

Tree
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Comparison of 3 bounds
I The choice of S favors the Simes bound of BNR
I But for large r , new bounds better
I Vtree better than Vpart as expected, despite a worst union bound

correction
µ = 2 µ = 3 µ = 4
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Comparison of 3 bounds
Influence of α

µ = 3 µ = 4
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New hybrid bound suggested by the simulations
I V γ

hybrid(α,S) = min (VSimes((1− γ)α,S),Vtree(γα, S))
I γ = 0.02: favors Simes, not a problem because Vtree is little sensitive

to small α
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Recap

New confidence bounds that exploit the signal localization to improve on
existing bounds, with an acceptable computation time
Limitations:

I DKWM inequality involves independence
I The chosen ζk can’t reject a whole subset (including individual

hypotheses)
I The Rk have to be fixed before seeing the data (not post hoc!)
I The union bound correction chosen may induce conservativeness

Published paper in Scandinavian Journal of Statistics (2020) [Durand et al.
(2020)]
Also on arXiv: 1807.01470
R package available on github: sansSouci
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Next steps I

I Depart from independence with ζk(X ) = Lk(α/K ) such that
PX∼P

(
|Rk ∩H0(P)| ≤ Lk(λ)

)
≤ λ

I Concentration inequalities for dependent variables?
I λ-calibration under known dependence or permutation invariance

[Hemerik and Goeman (2018) and Blanchard et al. (2020)]
I Use local tests [Goeman and Solari (2011) and Meijer et al. (2015)], App. B.

of my thesis
I Different Lk at different hierarchical levels [Dobriban et al. (2015)]

I Reduce union bound penalty with some α-recycling (App. B of my
thesis)

I Other families combining BNR approach and a deterministic partition
I R = (Rk,ik , ζk,ik ) k∈K

1≤ik≤|Rk |
, ζk,ik = ik − 1

I The results on forest structures allows the regions to be random
I A first step toward automatic selection of the forest structure
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Next steps II

I Reuse some of those ideas to go back to FWER control (App. B of
my thesis)

I Pursue work on closed testing shortcuts for post hoc bounds (App.
A.1 of my thesis)

I Applications, real-life favorable cases like neuroimagery [Vesely et al.
(2021)]

G. Durand Conclusion | Next steps 37 / 37



Bibliography I

Berk, Richard et al. (2013). “Valid post-selection inference”. In: The Annals of Statistics 41.2,
pp. 802–837.

Blanchard, Gilles, Pierre Neuvial, and Etienne Roquain (2020). “Post hoc confidence bounds on
false positives using reference families”. In: The Annals of Statistics 48.3, pp. 1281 –1303.
doi: 10.1214/19-AOS1847. url: https://doi.org/10.1214/19-AOS1847.

Dobriban, Edgar et al. (2015). “Optimal multiple testing under a Gaussian prior on the effect
sizes”. In: Biometrika 102.4, pp. 753–766.

Durand, Guillermo et al. (2020). “Post hoc false positive control for structured hypotheses”. In:
Scandinavian journal of Statistics 47.4, pp. 1114–1148.

Dvoretzky, Aryeh, Jack Kiefer, and Jacob Wolfowitz (1956). “Asymptotic minimax character of
the sample distribution function and of the classical multinomial estimator”. In: The Annals
of Mathematical Statistics, pp. 642–669.

Fithian, William, Dennis Sun, and Jonathan Taylor (2017). “Optimal inference after model
selection”. In: arXiv preprint arXiv:1410.2597.

Genovese, Christopher R and Larry Wasserman (2006). “Exceedance control of the false
discovery proportion”. In: Journal of the American Statistical Association 101.476,
pp. 1408–1417.

Goeman, Jelle J and Aldo Solari (2011). “Multiple testing for exploratory research”. In:
Statistical Science, pp. 584–597.

G. Durand 1 / 7

https://doi.org/10.1214/19-AOS1847
https://doi.org/10.1214/19-AOS1847


Bibliography II

Hemerik, Jesse and Jelle J Goeman (2018). “False discovery proportion estimation by
permutations: confidence for significance analysis of microarrays”. In: Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 80.1, pp. 137–155.

Lee, Jason D et al. (2016). “Exact post-selection inference, with application to the lasso”. In:
The Annals of Statistics 44.3, pp. 907–927.

Marcus, Ruth, Peritz Eric, and K Ruben Gabriel (1976). “On closed testing procedures with
special reference to ordered analysis of variance”. In: Biometrika 63.3, pp. 655–660.

Massart, Pascal (1990). “The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality”. In:
The Annals of Probability, pp. 1269–1283.

Meijer, Rosa J, Thijmen JP Krebs, and Jelle J Goeman (2015). “A region-based multiple testing
method for hypotheses ordered in space or time”. In: Statistical Applications in Genetics and
Molecular Biology 14.1, pp. 1–19.

Meinshausen, Nicolai (2006). “False discovery control for multiple tests of association under
general dependence”. In: Scandinavian Journal of Statistics 33.2, pp. 227–237.

Tibshirani, Ryan J et al. (2016). “Exact post-selection inference for sequential regression
procedures”. In: Journal of the American Statistical Association 111.514, pp. 600–620.

Vesely, Anna, Livio Finos, and Jelle J Goeman (2021). “Permutation-based true discovery
guarantee by sum tests”. In: arXiv preprint arXiv:2102.11759.

G. Durand 2 / 7



Classical theory

Family-Wise Error Rate (FWER)
I FWER(R) = P(V (R) > 0)
I Bonferroni method: reject all pi ≤ α

m (union bound)
I Variant: k-FWER(R) = P(V (R) ≥ k)

I Choice of k? Often post hoc!

False Discovery Rate (FDR)
I FDR(R) = E

[
V (R)
|R|∨1

]
I Benjamini-Hochberg method for positive dependence

I Reject all pi ≤ αk̂
m

I k̂ = max{k : p(k) ≤ αk
m }, p(1) ≤ · · · ≤ p(m)
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Closed testing for post hoc inference
Designed for FWER control [Marcus et al. (1976)]

I Form H0,I =
⋂

i∈I H0,i all intersection hypotheses
I Have a collection of α level local test φI
I Examples:

I Bonferroni test φI = 1 if ∃i ∈ I : pi ≤ α/|I|
I Simes test φI = 1 if ∃i ∈ I : p(i :I) ≤ αi/|I| (under PRDS)

I Test H0,I only if all H0,J , J ⊇ I, are rejected
I Reject the individual hypotheses H0,i such that H0,{i} has been

rejected that way
I Then FWER(Closed testing) ≤ α
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Closed testing for post hoc inference
[Goeman and Solari (2011)]

Main idea
The closed testing provides more information than just the individual
rejects:

I Let X the set of all I such that we rejected H0,I
I Simultaneous guarantee over all H0,I , I ∈ X :

P (∀I ∈ X ,H0,I is false) ≥ 1− α

Confidence bound derivation:
I VGS(S) = max I⊆S

I 6∈X
|I| is a confidence bound because

∃S, |S ∩H0| > VGS(S) =⇒ ∃S,S ∩H0 ∈ X
=⇒ ∃I ∈ X ,H0,I is true

I VGS(S) = V ∗R(S) with R = (I, |I| − 1)I∈X
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DKWM use

I Let S ⊂ Nm
I Nt(S) =

∑
i∈S 1{pi (X ) > t}

I v = |S ∩H0|

v ≤ min
t∈[0,1)

(√
log(1/λ)/2
2(1− t) +

{ log(1/λ)/2
4(1− t)2 + Nt(S)

1− t

}1/2)2

comes from

v−1
v∑

i=1
1{Ui > t} − (1− t) ≥ −

√
log(1/λ)/(2v), ∀t ∈ [0, 1],

with probability at least 1− λ (U1, . . . ,Uv i.i.d. uniform, Nt(S) dominates∑v
i=1 1{Ui > t} by independence)
I S = Rk and λ = α/K (union bound)
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Forest algorithm
Computation of V ∗R(S)

Data: R = (Li :j , ζi ,j)(i ,j)∈K and S ⊂ Nm.
Result: V ∗R(S).
R←− R⊕; K ←− K⊕ (completion);
H ←− maxk∈K φ(k) (max depth);
V ←− (ζk ∧ |S ∩ Rk |)k∈KH ;
for h ∈ {H − 1, . . . , 1} do

newV ←− (0)k∈Kh ;
for k ∈ Kh do

Succk ←− {k ′ ∈ Kh+1 : Rk′ ⊂ Rk};
newVk ←− min

(
ζk ∧ |S ∩ Rk |,

∑
k′∈Succk

Vk′
)

;
end
V ←− newV ;

end
return

∑
k∈K1 Vk .
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