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Multiple testing setting

I Random data X : (Ω, T ,P)→ (X ,X) with unknown distribution
L(X ) ∈P a family of distributions

I m null hypotheses H0,i ⊂P on L(X )
I H0 = {i : L(X ) ∈ H0,i}: i ∈ H0 ⇔ H0,i is true
I m p-values pi = pi (X ) such that pi � U([0, 1]) if i ∈ H0
I Our object of interest: for every subset of hypotheses S ⊆ Nm:

V (S) = |S ∩H0|
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Multiple testing setting
Toy setting, used for simulations

I Gaussian one-sided case: X = (X1, . . . ,Xm),
L(X ) ∈P = {N (µ, Idm) : ∀i ∈ Nm, µi ≥ 0}

I We test, for all i ∈ Nm, H0,i : µi = 0 versus H1,i : µi > 0.
I Formally, H0,i = {N (µ, Idm) ∈P : µi = 0}
I pi (X ) = pi (Xi ) = 1− Φ(Xi ) with Φ the c.d.f. of N (0, 1)
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Multiple testing setting
Classical MT theory

I Form a rejection procedure R : X → P(Nm) with a statistical
guarantee on V (R(X )) no matter L(X )

I FWER(R) = P(V (R(X )) > 0)
I Controlled by the famous Bonferroni procedure:

RBonf (X ) =
{

i : pi (X ) ≤ α
m
}

.

I FWER control too stringent for applications ⇒ FDP(R,X ) = V (R(X))
|R(X)|∨1

(difficult to control) or FDR(R) = E [FDP(R,X )].
I FDP or FDR control ⇒ allow for some false positives
I Controlled under PRDS (or independence) by the Benjamini-Hochberg

procedure [Benjamini and Yekutieli (2001)]
I BH: let k̂BH = max

{
k : p(k)(X ) ≤ αk

m
}

, then
RBH(X ) =

{
i : pi (X ) ≤ αk̂BH

m

}
.
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Exploratory analysis in multiple testing

Exploratory analysis: searching interesting hypotheses that will be
cautiously investigated after.
Desired properties [Goeman and Solari (2011)]:
I Mildness: allows some false positives
I Flexibility: the procedure does not prescribe, but advise
I Post hoc: take decisions on the procedure after seing the data

[Goeman and Solari (2011)]

This reverses the traditional roles of the user and procedure in multiple
testing. Rather than [...] to let the user choose the quality criterion, and
to let the procedure return the collection of rejected hypotheses, the user
chooses the collection of rejected hypotheses freely, and the multiple
testing procedure returns the associated quality criterion.
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Post hoc and replication crisis

Post hoc done wrong: p-hacking
I Pre-selecting variables that seem significant, exclude others
I Theoretical results no longer hold because the selection step is random
I Example: selecting the 1000 smallest p-values in a genetic study with

106 variants

I p-hacking may be one of the causes of the replication crisis
I Replication crisis: many published results non reproductible
⇒ need for exploratory analysis MT procedures with the above properties
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Our goal: post hoc inference
Or simultaneous inference

Confidence bounds on any set of selected variables
A (post hoc) confidence bound is a random function

V̂ : P(Nm)→ J0,mK

such that:
P
(
∀S ⊂ Nm,V (S) ≤ V̂ (S)

)
≥ 1− α. (1)

V̂ depends on X and (1) has to be true no matter L(X ).

I Hence for any selected Ŝ, P
(
V (Ŝ) ≤ V̂ (Ŝ)

)
≥ 1− α holds

I Also an FDP bound: P
(
∀S ⊂ Nm,FDP(S) ≤ V̂ (S)/|S|

)
≥ 1− α

I =⇒ allows construction of sets with bounded FDP
I Originates from [Genovese and Wasserman (2006) and Meinshausen (2006)]
I A guarantee over any selected set instead of a rejected set, advise

some Ŝ instead of prescribe one R : the MT paradigm is reversed
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BNR technology
[Blanchard et al. (2020)]

Key concept: reference family
I R = (Rk , ζk)k∈K (random) such that Joint Error Rate (JER) control:

JER(R) = P (∃k, |Rk ∩H0| > ζk) ≤ α. (2)

R depends on X and (2) has to be true no matter L(X ).
I Conversely, P (∀k,V (Rk) ≤ ζk) ≥ 1− α
I Confidence bound only on the members of R
I =⇒ Derivation of a global confidence bound by interpolation
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BNR technology
[Blanchard et al. (2020)]

Idea: we get the following info on H0:

H0 ∈ A(R) = {A ∈ P(Nm) : ∀k, |Rk ∩ A| ≤ ζk} .

Two different bounds
I V ∗R(S) = max {|S ∩ A| : A ∈ A(R)} optimal but hard to compute

(possibly NP)
I VR(S) = mink (ζk + |S \ Rk |) ∧ |S| easier to compute, ≥ V ∗R(S)
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BNR technology
Family construction

I In [Blanchard et al. (2020)], ζk = k − 1 always, and Rk = {i : pi < tk}
such that JER control.

I Example: tk = αk/m (Simes inequality) if p-values PRDS.
I ⇒ JER control becomes “simultaneous k-FWER control”
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Spatial structure

Informal assumption
The signal is localized in some spatially structured regions, with, possibly,
different levels, that we can access to with previous information (e.g.
active SNPs into genes into chromosomes)

I Accordingly, find adapted new reference families, using those regions
I We want V ∗R to be easy to compute
I Our approach: deterministic Rk ’s capturing spatial hierarchy, estimate

the true nulls inside them (i.e. ζk random)
I the opposite of [Blanchard et al. (2020)]
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Forest structure
I ∀k, k ′ ∈ K, Rk ∩ Rk′ ∈ {Rk ,Rk′ ,∅}
I Connected components are trees:

R1

R2 R3 R4

R5 R6 R7

R8

R9

I Accommodates to different levels of signal localization through the
different depths of the nodes

I Includes nested families or totally disjoint families
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New interpolation bounds
Goal: compute V ∗R easily with forest structure

I Recall VR(S) = mink∈K (ζk ∧ |S ∩ Rk |+ |S \ Rk |)

Definition
For any q ≤ K = |K|,

Ṽ q
R(S) = min

Q⊂K,|Q|≤q

(∑
k∈Q

ζk ∧ |S ∩ Rk |+
∣∣∣∣S \ ⋃

k∈Q
Rk

∣∣∣∣
)
.

Property

V ∗R(S) ≤ Ṽ K
R (S) ≤ Ṽ K−1

R (S) ≤ · · · ≤ Ṽ 2
R(S) ≤ Ṽ 1

R(S) = VR(S)
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Main results
Compute V ∗R easily with forest structure

Theorem

V ∗R(S) = Ṽ K
R (S)

Even better,
V ∗R(S) = Ṽ `

R(S),

with ` = number of leaves = max number of disjoint sets

Corollary
` = 1 for nested families and a property in BNR is recovered
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Forest structure
Property (completion)

I Each forest structure can be completed to includes all leaves
I Regions are disjoint unions of leaves: Rk =

⋃j
`=i L` = Li :j

I For an added leaf L`, just state ζ` = |L`|

L1:7

L1 L2:3 L4:5

L2 L3 L4 L5

L6:7

L6 L7

L8
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Main results
Compute V ∗R easily with forest structure

Corollary (derived from the proof by construction)
There is a simple and efficient algorithm to compute Ṽ K

R (S) if R is
complete (O(Hm) complexity).

Lemma
Completing the family does not change V ∗R and Ṽ K

R .

Corollary
There is a simple algorithm to compute V ∗R(S) in any case by completing
the family first.

Note: all of the above does not depend on the choice of the ζk and works
for random Rk .
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Forest algorithm
Computation of V ∗R(S)

Data: R = (Li :j , ζi ,j)(i ,j)∈K and S ⊂ Nm
R←− R⊕; K ←− K⊕; n←− final number of leaves (completion)
Vec ←− (0, . . . , 0) ∈ Rn (initialisation)
H ←− maximum depth
for (i , j) at depth H do

Veci ←− ζi :j ∧ |S ∩ Ri :j |
end
for h ∈ {H − 1, . . . , 1} do

for (i , j) at depth h do
Succi :j ←− {(i ′, j ′) at depth h + 1 : Ri ′:j′ ⊂ Ri :j}
Veci ←− min

(
ζi :j ∧ |S ∩ Ri :j |,

∑
(i ′,j′)∈Succi :j Veci ′

)
Vec` ←− 0 for all i + 1 ≤ ` ≤ j

end
end
return

∑n
i=1 Veci .



Forest algorithm

R1

R2 R3 R4

L2 R5 R6 R7

R8

L6 R9

L8

K3

R1

R2 R3 R4

L2 R5 R6 R7

R8

L6 R9

L8

K2

R1

R2 R3 R4

L2 R5 R6 R7

R8

L6 R9

L8

K1



Problem

I We often want to compute V ∗R(S) for a path St , 1 ≤ t ≤ m
I For example St = {the indexes of the t smallest p-values}
I The above algorithm becomes slow
I Is there a may to leverage the fact that we add one p-value at a time

to update V ∗R(St) quickly?
I YES!
I And we can also get the partition that realizes the min

V ∗R(St) = min
Q⊂K⊕,Q partition

(∑
k∈Q

ζk ∧ |St ∩ Rk |
)
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NEW algorithm
Fast computation of a path (V ∗R(St))1≤t≤m

V0 ←− 0, K− ←− {k ∈ K : ζk = 0}, ∀k ∈ K, ηk ←− 0
for t = 1, . . . ,m do

if it ∈
⋃

k∈K− Rk then
Vt ←− Vt−1

end
else

for h = 1, . . . , hmax(t) do
find k(t,h) at depth h such that it ∈ Rk(t,h)
ηk(t,h) ←− ηk(t,h) + 1
if ηk(t,h) < ζk then

pass
end
else
K− ←− K− ∪ {k(t,h)}
break the loop

end
end
Vt ←− Vt−1 + 1

end
end
return (Vt )1≤t≤m
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True nulls estimation inside regions
That is, ζk computation

I K deterministic regions, let C =
√

1
2 log

(
K
α

)
I ζk = |Rk | ∧mint∈[0,1)

⌊
C

2(1−t) +
(

C2

4(1−t)2 +
∑

i∈Rk
1{pi>t}

1−t

)1/2⌋2

I Comes from handling the DKWM inequality [Dvoretzky et al. (1956) and
Massart (1990)]
I Requires independence!

I Replace mint∈[0,1) and t above by min0≤`≤s and p(`) for practical
usage =⇒ computation of all ζk is also O(Hm) complex

I α/K instead of α in C : union bound for JER control
I Dependence on α (and to K !) only through a log
I ζk > 0 (entry cost)
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DKWM use

DKWM :

v−1
v∑

i=1
1{Ui > t} − (1− t) ≥ −

√
log(1/λ)/(2v), ∀t ∈ [0, 1],

with probability at least 1− λ, for U1, . . . ,Uv i.i.d. U([0, 1]).

2nd degree polynom manipulation yields:

v ≤ min
t∈[0,1)

(√
log(1/λ)/2
2(1− t) +

( log(1/λ)/2
4(1− t)2 +

∑v
i=1 1{Ui > t}

1− t

)1/2)2

I v = |Rk ∩H0|, λ = α/K
I
∑

i∈Rk
1{pi (X ) > t} dominates

∑v
i=1 1{Ui > t} by independence
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Comparison of 3 bounds
Simes bound of BNR, and 2 new

I Vtree and Vpart: complete binary tree or only the leaves partition
I Signal in adjacent leaves, expectation of Vtree good despite worst K
I Parameters: signal µ̄ and signal proportion in active leaves r

L1:8

L1:4 L5:8

L1:2 L3:4 L5:6 L7:8

L1 L2 L3 L4 L5 L6 L7 L8Partition

Tree
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Comparison of 3 bounds
I St = the t-th smallest p-values
I Simes better for large signal, but new bounds better for large r , generally
I “Plateau” effect for Simes for large x
I Vtree better than Vpart as expected, despite worst union bound constant
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Comparison of 3 bounds
Influence of α

µ = 3 µ = 4
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New hybrid bound suggested by the simulations
I V γ

hybrid(α,S) = min (VSimes((1− γ)α,S),Vtree(γα, S))
I γ = 0.02: favors Simes, not a problem because Vtree is little sensitive

to small α
µ = 3 µ = 4
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Application
Proteomics data
I Joint work with Marie Chion, Alexandre Perrin, Auriane Gabaut,

Mélina Gallopin, Romain Périer
I Data from [Chion et al. (2022)]

I Controlled(-ish) experiment : H0,i is known for all i!
I One-sided p-values from a mean comparison test (Welch test)
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Application
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Conclusion

New confidence bounds that exploit the signal localization to improve on
existing bounds, with an acceptable computation time
Limitations:
I DKWM inequality involves independence
I The chosen ζk can’t reject a whole subset (including individual

hypotheses)
I The Rk have to be fixed before seeing the data (not post hoc!)
I The union bound correction chosen may induce conservativeness

Published paper in Scandinavian Journal of Statistics (2020) [Durand et al.
(2020)]
Also on arXiv: 1807.01470
R package available on github: sansSouci
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Next steps

I Let φ(·, ·, ·) a FWER-controlling test,
I ζk = Lk

(
α
K

)
= |Rk | −

∣∣φ (X , αK ,Rk
)∣∣ is valid

I No independence required if φ doesn’t require it
I ζk = 0 doable ⇐⇒ V ∗(S) = 0 doable

I =⇒ alternative Lk to DKWM. Also : permutation-based Lk ? Concentration
inequalities for (weakly) dependent variables? Estimators of [Chen (2019)]?

I Adaptation to the heterogeneous discrete setting?
I Bayesian post hoc with `-values? With HMM? [Perrot-Dockès et al. (2023)]
I Learn the regions with a training set? [Blain et al. (2022)] already learn BNR tk .
I Applications to neuroimagery [Vesely et al. (2021)]
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Closed testing for post hoc inference
Designed for FWER control [Marcus et al. (1976)]

I Form H0,I =
⋂

i∈I H0,i ∀I ⊂ Nm: all intersection hypotheses
I Have a collection of α level local tests φI
I Examples:

I Bonferroni test φI = 1 if ∃i ∈ I : pi ≤ α/|I|
I Simes test φI = 1 if ∃i ∈ I : p(i :I) ≤ αi/|I| (under PRDS)

I Test H0,I only if all H0,J , J ⊇ I, are rejected
I Reject the individual hypotheses H0,i such that H0,{i} has been

rejected that way
I Then FWER(Closed testing) ≤ α
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Closed testing for post hoc inference
[Goeman and Solari (2011)]

Main idea
The closed testing provides more information than just the individual
rejects:
I Let X the set of all I such that we rejected H0,I
I Simultaneous guarantee over all H0,I , I ∈ X :

P (∀I ∈ X ,H0,I is false) ≥ 1− α

Confidence bound derivation:
I VGS(S) = max I⊆S

I 6∈X
|I| is a confidence bound because

∃S, |S ∩H0| > VGS(S) =⇒ ∃S,S ∩H0 ∈ X
but H0,S∩H0 is true

=⇒ ∃I ∈ X ,H0,I is true
I VGS(S) = V ∗R(S) with R = (I, |I| − 1)I∈X
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