Contrôle post hoc des faux positifs pour des hypothèses structurées

Guillermo Durand

LMO, Orsay

Séminaire de Statistique du MAP5

15/11/2024

Table of contents

1. MT setting, motivations

- 2. Problem, previous work
- 3. New families
- 4. Simulations
- 5. A "toy" application
- 6. Conclusion

Multiple testing setting

- Random data $X : (\Omega, \mathcal{T}, \mathbb{P}) \to (\mathcal{X}, \mathfrak{X})$ with unknown distribution $\mathcal{L}(X) \in \mathscr{P}$ a family of distributions
- *m* null hypotheses $H_{0,i} \subset \mathscr{P}$ on $\mathcal{L}(X)$
- $\blacktriangleright \mathcal{H}_0 = \{i : \mathcal{L}(X) \in H_{0,i}\}: i \in \mathcal{H}_0 \Leftrightarrow H_{0,i} \text{ is true}$
- *m p*-values $p_i = p_i(X)$ such that $p_i \succeq \mathcal{U}([0,1])$ if $i \in \mathcal{H}_0$
- Our object of interest: for every subset of hypotheses $S \subseteq \mathbb{N}_m$: $V(S) = |S \cap \mathcal{H}_0|$

Multiple testing setting

Toy setting, used for simulations

- ► Gaussian one-sided case: $X = (X_1, ..., X_m)$, $\mathcal{L}(X) \in \mathscr{P} = \{\mathcal{N}(\mu, \mathrm{Id}_m) : \forall i \in \mathbb{N}_m, \mu_i \ge 0\}$
- We test, for all $i \in \mathbb{N}_m$, $H_{0,i}$: $\mu_i = 0$ versus $H_{1,i}$: $\mu_i > 0$.
- ► Formally, $H_{0,i} = {\mathcal{N}(\boldsymbol{\mu}, \mathrm{Id}_m) \in \mathscr{P} : \mu_i = 0}$
- $p_i(X) = p_i(X_i) = 1 \Phi(X_i)$ with Φ the c.d.f. of $\mathcal{N}(0, 1)$

Multiple testing setting

Classical MT theory

- Form a rejection procedure R : X → P(N_m) with a statistical guarantee on V(R(X)) no matter L(X)
- FWER $(R) = \mathbb{P}(V(R(X)) > 0)$

Controlled by the famous Bonferroni procedure: $R_{Bonf}(X) = \{i : p_i(X) \leq \frac{\alpha}{m}\}.$

▶ FWER control too stringent for applications \Rightarrow FDP $(R, X) = \frac{V(R(X))}{|R(X)| \lor 1}$ (difficult to control) or FDR $(R) = \mathbb{E}$ [FDP(R, X)].

- FDP or FDR control \Rightarrow allow for some false positives
- Controlled under PRDS (or independence) by the Benjamini-Hochberg procedure [Benjamini and Yekutieli (2001)]

▶ BH: let
$$\hat{k}_{BH} = \max\left\{k : p_{(k)}(X) \le \frac{\alpha k}{m}\right\}$$
, then
 $R_{BH}(X) = \left\{i : p_i(X) \le \frac{\alpha k_{BH}}{m}\right\}$.

Exploratory analysis in multiple testing

Exploratory analysis: searching interesting hypotheses that will be cautiously investigated after.

Desired properties [Goeman and Solari (2011)]:

- Mildness: allows some false positives
- Flexibility: the procedure does not prescribe, but advise
- Post hoc: take decisions on the procedure after seing the data

[Goeman and Solari (2011)]

This **reverses the traditional roles** of the user and procedure in multiple testing. Rather than [...] to let the user choose the quality criterion, and to let the procedure return the collection of rejected hypotheses, the **user chooses the collection of rejected hypotheses freely**, and the multiple testing procedure returns the **associated quality criterion**.

Post hoc and replication crisis

Post hoc done wrong: *p*-hacking

- Pre-selecting variables that seem significant, exclude others
- Theoretical results no longer hold because the selection step is random
- Example: selecting the 1000 smallest *p*-values in a genetic study with 10⁶ variants
- *p*-hacking may be one of the causes of the replication crisis (many published results non reproductible)
- \Rightarrow need for exploratory analysis MT procedures with the above properties

Table of contents

1. MT setting, motivations

- 2. Problem, previous work
- 3. New families
- 4. Simulations
- 5. A "toy" application
- 6. Conclusion

Our goal: post hoc inference

Or simultaneous inference

Confidence bounds on any set of selected variables

A (post hoc) confidence bound is a random function

 $\widehat{V}: \mathcal{P}(\mathbb{N}_m) \to \llbracket 0, m \rrbracket$

such that:

$$\mathbb{P}\left(\forall S \subset \mathbb{N}_m, V(S) \leq \widehat{V}(S)\right) \geq 1 - \alpha.$$
(1)

 \widehat{V} depends on X and (1) has to be true no matter $\mathcal{L}(X)$.

- Hence for any selected \widehat{S} , $\mathbb{P}\left(V(\widehat{S}) \leq \widehat{V}(\widehat{S})\right) \geq 1 \alpha$ holds
- ► Also an FDP bound: $\mathbb{P}\left(\forall S \subset \mathbb{N}_m, \mathsf{FDP}(S) \leq \widehat{V}(S)/|S|\right) \geq 1 \alpha$
- lacksim \Longrightarrow allows construction of sets with bounded FDP
- Originates from [Genovese and Wasserman (2006) and Meinshausen (2006)]
- A guarantee over any selected set instead of a rejected set, advise some \widehat{S} instead of prescribe one R: the MT paradigm is reversed

BNR technology [Blanchard et al. (2020)]

Key concept: reference family

▶ $\mathfrak{R} = (R_k, \zeta_k)_{k \in K}$ (random) such that Joint Error Rate (JER) control:

$$\mathsf{JER}(\mathfrak{R}) = \mathbb{P}\left(\exists k, |R_k \cap \mathcal{H}_0| > \zeta_k\right) \le \alpha.$$
(2)

 \mathfrak{R} depends on X and (2) has to be true no matter $\mathcal{L}(X)$.

- Conversely, $\mathbb{P}(\forall k, V(R_k) \leq \zeta_k) \geq 1 \alpha$
- Confidence bound only on the members of R
- $\blacktriangleright \implies$ Derivation of a global confidence bound by interpolation

BNR technology [Blanchard et al. (2020)]

Idea: we get the following info on \mathcal{H}_0 :

$$\mathcal{H}_0 \in \mathcal{A}(\mathfrak{R}) = \{A \in \mathcal{P}(\mathbb{N}_m) : \forall k, |R_k \cap A| \leq \zeta_k\}.$$

Two different bounds

- V^{*}_ℜ(S) = max {|S ∩ A| : A ∈ A(ℜ)} optimal but hard to compute (possibly NP)
- $\blacktriangleright \ \overline{V}_{\mathfrak{R}}(S) = \min_k \left(\zeta_k + |S \setminus R_k| \right) \land |S| \text{ easier to compute, } \geq V^*_{\mathfrak{R}}(S)$

BNR technology

Family construction

- ► In [Blanchard et al. (2020)], $\zeta_k = k 1$ always, and $R_k = \{i : p_i < t_k\}$ such that JER control.
- Example: $t_k = \alpha k/m$ (Simes inequality) if *p*-values PRDS.
- ▶ \Rightarrow JER control becomes "simultaneous *k*-FWER control"

Table of contents

- 1. MT setting, motivations
- 2. Problem, previous work
- 3. New families
- 4. Simulations
- 5. A "toy" application
- 6. Conclusion

DBNR approach

Joint work with Gilles Blanchard, Pierre Neuvial and Etienne Roquain

Informal assumption

The signal is localized in some spatially structured regions, with a hierarchy of different levels, that we can access to with previous information (e.g. active SNPs into genes into chromosomes)

- Accordingly, find adapted new reference families, using those regions
- We want $V_{\mathfrak{R}}^*$ to be easy to compute
- Our approach: deterministic R_k's capturing spatial hierarchy, estimate the true nulls inside them (i.e. ζ_k random)
 - the opposite of [Blanchard et al. (2020)]

Forest structure

 $\blacktriangleright \forall k, k' \in \mathcal{K}, \ R_k \cap R_{k'} \in \{R_k, R_{k'}, \varnothing\}$

Connected components are trees:

- Accommodates to different levels of signal localization through the different depths of the nodes
- Includes nested families or totally disjoint families

New interpolation bounds

Goal: compute V_{\Re}^* easily with forest structure

$$\blacktriangleright \text{ Recall } \overline{V}_{\mathfrak{R}}(S) = \min_{k \in \mathcal{K}} \left(\zeta_k \land |S \cap R_k| + |S \setminus R_k| \right)$$

Definition For any $q \leq K = |\mathcal{K}|$, $\widetilde{V}_{\mathfrak{R}}^{q}(S) = \min_{Q \subset \mathcal{K}, |Q| \leq q} \left(\sum_{k \in Q} \zeta_{k} \wedge |S \cap R_{k}| + \left| S \setminus \bigcup_{k \in Q} R_{k} \right| \right).$

Property

$$V_{\mathfrak{R}}^*(S) \leq \widetilde{V}_{\mathfrak{R}}^K(S) \leq \widetilde{V}_{\mathfrak{R}}^{K-1}(S) \leq \cdots \leq \widetilde{V}_{\mathfrak{R}}^2(S) \leq \widetilde{V}_{\mathfrak{R}}^1(S) = \overline{V}_{\mathfrak{R}}(S)$$

Main results Compute V_{\Re}^* easily with forest structure

Theorem

$$V^*_{\mathfrak{R}}(S) = \widetilde{V}^{\mathcal{K}}_{\mathfrak{R}}(S)$$

Even better,

$$V_{\mathfrak{R}}^*(S) = \widetilde{V}_{\mathfrak{R}}^{\ell}(S),$$

with ℓ = number of leaves = max number of disjoint sets

Corollary

 $\ell=1$ for nested families and a property in BNR is recovered

Forest structure

Property (completion)

- Each forest structure can be completed to includes all leaves
- ▶ Regions are disjoint unions of leaves: $R_k = \bigcup_{\ell=i}^{j} L_\ell = L_{i:j}$
- For an added leaf L_ℓ , just state $\zeta_\ell = |L_\ell|$

Main results

Compute $V_{\mathfrak{R}}^*$ easily with forest structure

Corollary (derived from the proof by construction)

There is a simple and efficient algorithm to compute $\widetilde{V}_{\mathfrak{R}}^{\mathsf{K}}(S)$ if \mathfrak{R} is complete (O(Hm) complexity).

Lemma

Completing the family does not change $V_{\mathfrak{R}}^*$ and $\widetilde{V}_{\mathfrak{R}}^K$.

Corollary

There is a simple algorithm to compute $V^*_{\mathfrak{R}}(S)$ in any case by completing the family first.

Note: all of the above does not depend on the choice of the ζ_k and works for random R_k .

Forest algorithm

Computation of $V_{\mathfrak{R}}^*(S)$

Data:
$$\mathfrak{R} = (L_{i:j}, \zeta_{i,j})_{(i,j) \in \mathcal{K}}$$
 and $S \subset \mathbb{N}_m$
 $\mathfrak{R} \longleftarrow \mathfrak{R}^{\oplus}; \mathcal{K} \leftarrow \mathcal{K}^{\oplus}; n \leftarrow \text{final number of leaves (completion)}$
 $Vec \leftarrow (0, \dots, 0) \in \mathbb{R}^n$ (initialisation)
 $H \leftarrow \text{maximum depth}$
for (i, j) at depth H do
 $| Vec_i \leftarrow \zeta_{i:j} \land |S \cap R_{i:j}|$
end
for $h \in \{H - 1, \dots, 1\}$ do
for (i, j) at depth h do
 $| Succ_{i:j} \leftarrow \{(i', j') \text{ at depth } h + 1 : R_{i':j'} \subset R_{i:j}\}$
 $| Vec_i \leftarrow \min(\zeta_{i:j} \land |S \cap R_{i:j}|, \sum_{(i', j') \in Succ_{i:j}} Vec_{i'})$
 $| Vec_{\ell} \leftarrow 0 \text{ for all } i + 1 \le \ell \le j$
end

end

return $\sum_{i=1}^{n} Vec_i$.

Forest algorithm

Problem

- ▶ We often want to compute $V^*_{\mathfrak{R}}(S)$ for a path S_t , $1 \le t \le m$
- ▶ For example S_t = {the indexes of the t smallest p-values}
- The above algorithm becomes slow
- Is there a may to leverage the fact that we add one p-value at a time to update V^{*}_R(S_t) quickly?
- YES!
- And we can also get the partition that realizes the min

$$V_{\mathfrak{R}}^*(S_t) = \min_{Q \subset \mathcal{K}^\oplus, Q \text{ partition}} \left(\sum_{k \in Q} \zeta_k \wedge |S_t \cap R_k|
ight)$$

NEW algorithm

Fast computation of a path $(V_{\mathfrak{R}}^*(S_t))_{1 \le t \le m}$

```
V_0 \leftarrow 0, \mathcal{K}^- \leftarrow \{k \in \mathcal{K} : \zeta_k = 0\}, \forall k \in \mathcal{K}, \eta_k \leftarrow 0
for t = 1, ..., m do
       if i_t \in \bigcup_{k \in \mathcal{K}^-} R_k then V_t \leftarrow V_{t-1}
        end
        else
                for h = 1, ..., h_{max}(t) do
                         find k^{(t,h)} at depth h such that i_t \in R_{k(t,h)}
                       \eta_{k(t,h)} \leftarrow \eta_{k(t,h)} + 1
                        \inf_{|} \eta_{k^{(t,h)}}_{\text{pass}} < \zeta_k \text{ then }
                         end
                         else
                           | \quad \mathcal{K}^- \longleftarrow \mathcal{K}^- \cup \{k^{(t,h)}\}
                            break the loop
                         end
                end
                 V_t \leftarrow V_{t-1} + 1
        end
end
return (V_t)_{1 < t < m}
```

True nulls estimation inside regions

That is, ζ_k computation

• *K* deterministic regions, let
$$C = \sqrt{\frac{1}{2} \log \left(\frac{K}{\alpha}\right)}$$

•
$$\zeta_k = |R_k| \wedge \min_{t \in [0,1)} \left| \frac{C}{2(1-t)} + \left(\frac{C^2}{4(1-t)^2} + \frac{\sum_{i \in R_k} \mathbb{1}\{p_i > t\}}{1-t} \right)^{1/2} \right|^2$$

- Comes from handling the DKWM inequality [Dvoretzky et al. (1956) and Massart (1990)]
 - Requires independence!
- Replace min_{t∈[0,1)} and t above by min_{0≤ℓ≤s} and p_(ℓ) for practical usage ⇒ computation of all ζ_k is also O(Hm) complex
- α/K instead of α in C: union bound for JER control
- Dependence on α (and to K!) only through a log
- $\zeta_k > 0$ (entry cost)

2

DKWM use

DKWM :

$$v^{-1}\sum_{i=1}^{v} \mathbb{1}\{U_i > t\} - (1-t) \ge -\sqrt{\log(1/\lambda)/(2v)}, \ \forall t \in [0,1],$$

with probability at least $1 - \lambda$, for U_1, \ldots, U_v i.i.d. $\mathcal{U}([0, 1])$.

2nd degree polynom manipulation yields:

$$u \leq \min_{t \in [0,1)} \left(rac{\sqrt{\log(1/\lambda)/2}}{2(1-t)} + \left(rac{\log(1/\lambda)/2}{4(1-t)^2} + rac{\sum_{i=1}^{
u} \mathbbm{1}\{U_i > t\}}{1-t}
ight)^{1/2}
ight)^2$$

$$\blacktriangleright v = |R_k \cap \mathcal{H}_0|, \ \lambda = \alpha/K$$

• $\sum_{i \in R_k} \mathbb{1}\{p_i(X) > t\}$ dominates $\sum_{i=1}^{v} \mathbb{1}\{U_i > t\}$ by independence

Table of contents

- 1. MT setting, motivations
- 2. Problem, previous work
- 3. New families
- 4. Simulations
- 5. A "toy" application
- 6. Conclusion

Comparison of 3 bounds

Simes bound of BNR, and 2 new

- \blacktriangleright $V_{\rm tree}$ and $V_{\rm part}$: complete binary tree or only the leaves partition
- Signal in adjacent leaves, expectation of V_{tree} good despite worst K
- ▶ Parameters: signal $\bar{\mu}$ and signal proportion in active leaves r

Comparison of 3 bounds

- S_t = the *t*-th smallest *p*-values
- Simes better for large signal, but new bounds better for large r, generally
- "Plateau" effect for Simes for large x
- ▶ $V_{\rm tree}$ better than $V_{\rm part}$ as expected, despite worst union bound constant

Comparison of 3 bounds

Influence of α

New hybrid bound suggested by the simulations

- $\blacktriangleright V_{\text{hybrid}}^{\gamma}(\alpha, S) = \min\left(V_{\text{Simes}}((1 \gamma)\alpha, S), V_{\text{tree}}(\gamma\alpha, S)\right)$
- ▶ $\gamma = 0.02$: favors Simes, not a problem because $V_{\rm tree}$ is little sensitive to small α

Table of contents

- 1. MT setting, motivations
- 2. Problem, previous work
- 3. New families
- 4. Simulations
- 5. A "toy" application
- 6. Conclusion

Application

Proteomics data

- Joint work with Marie Chion, Alexandre Perrin, Auriane Gabaut, Mélina Gallopin, Romain Périer
- Data from [Chion et al. (2022)]

Controlled(-ish) experiment : H_{0,i} is known for all i!
 One-sided *p*-values from a mean comparison test (Welch test)

G. Durand

Application

Application

Table of contents

- 1. MT setting, motivations
- 2. Problem, previous work
- 3. New families
- 4. Simulations
- 5. A "toy" application
- 6. Conclusion

Conclusion

New confidence bounds that exploit the signal localization to improve on existing bounds, with an acceptable computation time Limitations:

- DKWM inequality involves independence
- The chosen ζ_k can't reject a whole subset (including individual hypotheses)
- ▶ The *R_k* have to be fixed before seeing the data (not post hoc!)
- The union bound correction chosen may induce conservativeness

Published paper in Scandinavian Journal of Statistics (2020) [Durand et al. (2020)] 10.1111/sjos.12453 Also on arXiv: 1807.01470 R package available on github: sansSouci

Next steps

- With deterministic regions, $\zeta_k = L_k\left(\frac{\alpha}{k}\right)$
- ▶ \implies other L_k than those using DKWM? Permutation-based L_k ? Concentration inequalities for (weakly) dependent variables? Use of a DKWM-like inequality for conformal *p*-values? [Gazin et al. (2024)]
 - A simple example: let $\phi(\cdot, \cdot, \cdot)$ a FWER-controlling test

•
$$\zeta_k = L_k\left(\frac{\alpha}{K}\right) = |R_k| - \left|\phi\left(X, \frac{\alpha}{K}, R_k\right)\right|$$
 is valid

• No independence required if ϕ doesn't require it

•
$$\zeta_k = 0$$
 doable $\iff V^*(S) = 0$ doable

- Adaptation to the heterogeneous discrete setting (for both BNR and DBNR). Current work with Romain Périer, in collaboration with Etienne Roquain and Sebastian Doehler.
- Learn the regions with a training set? [Blain et al. (2022)] already learn BNR's t_k .
- Dependence with HMM? [Perrot-Dockès et al. (2023)]

Teaser of Romain's work

Using Bretagnolle's inequality for heterogeneous data

Teaser of Romain's work

Using Bretagnolle's inequality for heterogeneous data

Bibliography I

- Benjamini, Yoav and Daniel Yekutieli (2001). "The control of the false discovery rate in multiple testing under dependency". In: *Annals of statistics*, pp. 1165–1188.
- Blain, Alexandre, Bertrand Thirion, and Pierre Neuvial (2022). "Notip: Non-parametric true discovery proportion control for brain imaging". In: *NeuroImage* 260, p. 119492. ISSN: 1053-8119. DOI: https://doi.org/10.1016/j.neuroImage.2022.119492. URL: https://www.sciencedirect.com/science/article/pii/S1053811922006085.
- Blanchard, Gilles, Pierre Neuvial, and Etienne Roquain (2020). "Post hoc confidence bounds on false positives using reference families". In: The Annals of Statistics 48.3, pp. 1281 –1303. DOI: 10.1214/19-A0S1847. URL: https://doi.org/10.1214/19-A0S1847.
- Chion, Marie, Christine Carapito, and Frédéric Bertrand (2022). "Accounting for multiple imputation-induced variability for differential analysis in mass spectrometry-based label-free quantitative proteomics". In: *PLoS Computational Biology* 18.8, e1010420.
 - Durand, Guillermo et al. (2020). "Post hoc false positive control for structured hypotheses". In: *Scandinavian journal of Statistics* 47.4, pp. 1114–1148.
 - Dvoretzky, Aryeh, Jack Kiefer, and Jacob Wolfowitz (1956). "Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator". In: *The Annals of Mathematical Statistics*, pp. 642–669.

Bibliography II

Gazin, Ulysse, Gilles Blanchard, and Etienne Roquain (2024). "Transductive conformal inference with adaptive scores". In: *Proceedings of The 27th International Conference on Artificial Intelligence and Statistics*. Ed. by Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li. Vol. 238. Proceedings of Machine Learning Research. PMLR, pp. 1504–1512. URL: https://proceedings.mlr.press/v238/gazin24a.html.

- Genovese, Christopher R and Larry Wasserman (2006). "Exceedance control of the false discovery proportion". In: *Journal of the American Statistical Association* 101.476, pp. 1408–1417.
- Goeman, Jelle J and Aldo Solari (2011). "Multiple testing for exploratory research". In: *Statistical Science*, pp. 584–597.
- Marcus, Ruth, Peritz Eric, and K Ruben Gabriel (1976). "On closed testing procedures with special reference to ordered analysis of variance". In: *Biometrika* 63.3, pp. 655–660.
- Massart, Pascal (1990). "The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality". In: *The Annals of Probability*, pp. 1269–1283.

- Meinshausen, Nicolai (2006). "False discovery control for multiple tests of association under general dependence". In: *Scandinavian Journal of Statistics* 33.2, pp. 227–237.
- Perrot-Dockès, Marie et al. (2023). "Selective inference for false discovery proportion in a hidden Markov model". In: *TEST*, pp. 1–27.

Closed testing for post hoc inference

Designed for FWER control [Marcus et al. (1976)]

- ▶ Form $H_{0,I} = \bigcap_{i \in I} H_{0,i} \forall I \subset \mathbb{N}_m$: all intersection hypotheses
- Have a collection of α level local tests ϕ_I
- Examples:
 - ▶ Bonferroni test $\phi_I = 1$ if $\exists i \in I : p_i \leq \alpha/|I|$
 - Simes test $\phi_I = 1$ if $\exists i \in I : p_{(i:I)} \le \alpha i / |I|$ (under PRDS)
- ▶ Test $H_{0,I}$ only if all $H_{0,J}$, $J \supseteq I$, are rejected
- Reject the individual hypotheses H_{0,i} such that H_{0,{i} has been rejected that way
- Then FWER(Closed testing) $\leq \alpha$

Closed testing for post hoc inference

[Goeman and Solari (2011)]

Main idea

The closed testing provides more information than just the individual rejects:

- Let \mathcal{X} the set of all I such that we rejected $H_{0,I}$
- Simultaneous guarantee over all $H_{0,I}$, $I \in \mathcal{X}$:

$$\mathbb{P}\left(\forall I \in \mathcal{X}, H_{0,I} \text{ is false}\right) \geq 1 - \alpha$$

Confidence bound derivation:

►
$$V_{\text{GS}}(S) = \max_{\substack{I \subseteq S \\ I \notin \mathcal{X}}} |I| \text{ is a confidence bound because}$$

 $\exists S, |S \cap \mathcal{H}_0| > V_{\text{GS}}(S) \Longrightarrow \exists S, S \cap \mathcal{H}_0 \in \mathcal{X}$
but $H_{0,S \cap \mathcal{H}_0} \text{ is true}$
 $\Longrightarrow \exists I \in \mathcal{X}, H_{0,I} \text{ is true}$
► $V_{\text{GS}}(S) = V_{\mathfrak{R}}^*(S)$ with $\mathfrak{R} = (I, |I| - 1)_{I \in \mathcal{X}}$