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Simple testing

▶ Data: X = (X1, . . .Xn) i.i.d.∼ N (µ, 1), µ ≥ 0 unknown
▶ Question: is µ = 0 (no signal) or > 0 (signal) ?
▶ Null hypothesis H0: “µ = 0” versus alternative H1: “µ > 0”
▶ Test statistic: T (X ) = n−1/2∑n

i=1 Xi , under H0 T (X ) ∼ N (0, 1)
▶ T (X ) in the right tail of N (0, 1) ⇒ unrealistic ⇒ reject H0
▶ So we reject H0 if T (X ) is “large”: the rejection region R is the

event {T (X ) > c} with c to be determined
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Test of level α
Choice of the rejecting threshold

Goal:
Control the type I error = P of a wrong rejection = P of a false positive
▶ “level α” means type I error = PH0(T (X ) > c) ≤ α

▶ ⇒ c ≥ q∗
1−α the 1 − α quantile of N (0, 1)

▶ Given type I control, how to reduce type II error?
▶ Take the smallest c
▶ ⇒ R = {T (X ) > q∗

1−α}
▶ ⇔ if the p-value p(X ) = Φ̄ (T (X )) = 1 − Φ (T (X )) is ≤ α

▶ “Proof”: PH0 (p(X ) ≤ α) = PH0

(
T (X ) ≥ q∗

1−α

)
≤ α

▶ p(X ) is super-uniform under H0, p(X ) = P of observing an event at
least as extreme as the one observed under the null
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Test of level α
Single testing

I Data: X = (X1, . . . , Xn) i.i.d. N (µ, 1), µ 2 R unknown
I Null hypothesis H0: “µ  0" against alt. H1: “µ > 0"
I Test statistic: T (X ) = n�1/2Pn

i=1 Xi , p-value p(X ) = �(T (X ))

−4 −2 0 2 4

T=0.5
p=0.31

−4 −2 0 2 4

T=2
p=0.023

Test of level ↵: reject H0 if p(X )  ↵

Risk under H0: P(p(X )  ↵)  ↵

Etienne Roquain Hunting for significance with multiple testing Introduction 8 / 38
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Multiple testing
▶ Now each Xi is a vector (Xi1, . . . ,Xim) ∼ N (µ, Idm) with

µ = (µ1, . . . , µm) ∈ Rm
+

▶ m null hypotheses H0,j : “µj = 0” versus H1,j : “µj > 0”
▶ Because of independence, at least one false positive with

P = 1 − (1 − α)m0 −→
m0→∞

1
▶ E[| FP |] = αm0, m0 = |{j : H0,j is true}|
▶ Example if m = m0 = 48, α = 0.05:

Multiple testing

Pure noise, m = 48 indep. tests:

At least one false positive: with prob. 1 � (1 � 0.05)48 � 0.91

Etienne Roquain Hunting for significance with multiple testing Introduction 9 / 38
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Multiple testing
▶ False positives explosion with m
▶ m = m0 = 192, α = 0.05:

Multiple testing

Pure noise, m = 192 indep. tests:

At least one false positive: with prob. 1 � (1 � 0.05)192 � 1 � 6 ⇥ 10�5

Etienne Roquain Hunting for significance with multiple testing Introduction 9 / 38

Modern applications
▶ “Omic data”: genomic, proteomic... but also fMRI, exoplanet

detection...
▶ m = 104, 105, 106

▶ Too many false positives without correction
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Formal setting

▶ Let (X,X ,F) a statistical model and (Ω,A,P) a probability space
▶ Hence (X,X ) is a measurable space and F is a family of probability

measures defined on X
▶ Data is a measurable X : (Ω,A) → (X,X ) with X ∼ P ∈ F

▶ Other notation frequently used: PX = L(X ) = X#P = P
▶ P unknown ⇒ everything has to be valid ∀P ∈ F
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Formal setting

▶ m null hypotheses H0,i and alternatives H1,i which are subsets of F
▶ H0,i ∩ H1,i = ∅

▶ H0 = H0(P) = {i : P ∈ H0,i}: i ∈ H0 ⇔ H0,i is true
▶ H1(P) = H0(P)c = {i : P ∈ H1,i}

▶ m p-values pi = pi(X ) such that L(pi) ⪰ U([0, 1]) if i ∈ H0
▶ Each pi provides an α level test :

∀α ∈ [0, 1],∀P ∈ H0,i ,∀X ∼ P,P(pi ≤ α) ≤ α,

or, in short, PX∼P∈H0,i (pi ≤ α) ≤ α
▶ 2 points of view: measurable application pi(·) : X → [0, 1], then

applied to X , or random variable pi(X )
▶ For every subset of hypotheses S, let V (S) = |S ∩ H0| the # of false

positives (FP) in S
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Formal setting

▶ Formally, a rejection procedure R is a measurable function
(X,X ) −→ (P(J1,mK),P(P(J1,mK)))

▶ For a data point X ∼ P ∈ F, the associated rejection set is R(X ) or
R in short (⇒ small ambiguity), the rejected hypotheses are the H0,i
such that i ∈ R(X )

▶ “Classic” MT goal: construct a rejection procedure R with a
statistical guarantee on V (R) ⇔ control of an error rate related to #
of FP
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A toy example
In this formal setting

▶ (Ω,A,P) a probability space
▶ (X,X ) = (Rm,B (Rm)) : X = (X1, . . . ,Xm)
▶ V(1) the set of positive semidefinite matrices with 1’s on the diagonal
▶ F = {N (µ,Σ) : ∀j ∈ J1,mK , µj ≥ 0,Σ ∈ V(1)}
▶ H0,i = {N (µ,Σ) : µi = 0, ∀j ∈ J1,mK \ {i}, µj ≥ 0,Σ ∈ V(1)}
▶ H1,i = {N (µ,Σ) : µi > 0,∀j ∈ J1,mK \ {i}, µj ≥ 0,Σ ∈ V(1)}
▶ pi(X ) = Φ̄(Xi) = 1 − Φ(Xi)
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Generic construction of p-values
Following the idea of “the probability of an event at least as extreme as”

▶ Assume we have at hand m test statistics T1, . . . ,Tm : X −→ R
▶ for all i ∈ J1,mK, we can let

▶ p̂i(X ) = supP∈H0,i PZ∼P,Z⊥X (Ti(Z ) ≥ Ti(X )|X ) =
supP∈H0,i P(T −1

i ([Ti(X ),∞[)) = supP∈H0,i (Ti)#P ([Ti(X ),∞[)), or
▶ p̄i(X ) = supP∈H0,i PZ∼P,Z⊥X (Ti(Z ) ≤ Ti(X )|X ) =

supP∈H0,i P(T −1
i (] − ∞,Ti(X )])) = supP∈H0,i (Ti)#P (] − ∞,Ti(X )])),

or
▶ p̆i(X ) = 2 min(p̂i(X ), p̄i(X ))

▶ Classical constructions for unilateral and bilateral tests, equivalent to
UMP or UMP unbiased tests from Neyman-Pearson and Lehmann’s
theory for the appropriate choice of test statistics.

▶ Knowledge of P ∈ H0,i , is required to compute p̂i , p̄i or p̆i
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Generic construction of p-values
Following the idea of “the probability of an event at least as extreme as”

Theorem
p̂i , p̄i , p̆i all are appropriate p-values, that is, they are super-uniform under
the null:
Denote by u the c.d.f. of U([0, 1]): u(x) = 0 ∨ (x ∧ 1). Let Q ∈ H0,i ,
X ∼ Q, then

∀x ∈ R,P (p̂i(X ) ≤ x) ≤ u(x), (1)

∀x ∈ R,P (p̄i(X ) ≤ x) ≤ u(x), (2)

∀x ∈ R,P (p̆i(X ) ≤ x) ≤ u(x). (3)

G. Durand (LMO) Multiple testing framework 14 / 157



Generic construction of p-values
Proof

▶ Only for (1), (2) and (3) left as an exercise
▶ p̂i(X ) ∈ [0, 1] a.s. so we only need to check (1) for x ∈ [0, 1[.
▶ (1) for x ∈]0, 1[ implies (1) for x = 0 by right-continuity of the c.d.f
▶ Let x ∈]0, 1[

P (p̂i(X ) ≤ x) = P
(

sup
P∈H0,i

P(T −1
i ([Ti(X ),∞[)) ≤ x

)

= P

 ⋂
P∈H0,i

{
P(T −1

i ([Ti(X ),∞[)) ≤ x
}

≤ P
(
Q(T −1

i ([Ti(X ),∞[)) ≤ x
)
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Generic construction of p-values
Proof

▶ Let Fi the c.d.f. of Ti(X ) and F −
i its left-limit:

F −
i (x) = limε→0

ε>0
Fi(x − ε) = P (Ti(X ) < x)

▶

P
(
Q(T −1

i ([Ti(X ),∞[)) ≤ x
)

= P
(
1 − Q(T −1

i (] − ∞,Ti(X )[)) ≤ x
)

= P
(
1 − x ≤ F −

i (Ti(X ))
)

= P
(

Ti(X ) ∈
(
F −

i

)−1
([1 − x , 1])

)
▶ F −

i is nondecreasing with limits 0 in −∞ and 1 in ∞ so(
F −

i

)−1
([1 − x , 1]) is an interval: ]a,∞[ of [a,∞[ for some a.
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Generic construction of p-values
Proof

▶ Case 1: a ∈
(
F −

i

)−1
([1 − x , 1]) then

P
(
Q(T −1

i ([Ti(X ),∞[)) ≤ x
)

= P (Ti(X ) ≥ a)

= 1 − F −
i (a)

≤ 1 − (1 − x)
= x .

▶ Case 2:

P
(
Q(T −1

i ([Ti(X ),∞[)) ≤ x
)

= P (Ti(X ) > a)

= 1 − Fi(a)
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Generic construction of p-values
Proof

▶ Fi(a) is the right-limit of F −
i in a: Fi(a) = limε→0

ε>0
F −

i (a + ε)

▶ Note that a + ε ∈ (F −
i )−1([1 − x , 1]) hence F −

i (a + ε) ≥ 1 − x
▶ ε → 0 : Fi(a) ≥ 1 − x , which concludes case 2 and the proof for p̂i(X )
▶ For p̄i(X ), just use −Ti as statistic and go back to previous case
▶ ∀x ∈ R,P (2 min(p̂i(X ), p̄i(X )) ≤ x) ≤

(
2u
( x

2
))

∧ 1 = u(x)
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Rejection set
Thresholding
▶ Main idea: small p-values = signal (H1)
▶ In the remainder of this course, R(X ) =

{
i : pi(X ) ≤ t̂(X )

}
, = R

(
t̂
)

in short, with t̂ = t̂(X ) = t̂ (p1(X ), . . . , pm(X )) a random threshold

Thresholding
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Thresholding
Sorting p-values

▶ Sorted p-values: p(1) ≤ · · · ≤ p(m), p(0) = 0 by convention
▶ R(t̂) = {i : pi ≤ t̂} =

{
i : pi ≤ p(k̂)

}
, k̂ = max{k : p(k) ≤ t̂}

Ordering p-values
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Family-Wise Error Rate (FWER)

▶ Probability to make at least one false positive
FWER(R) = P(V (R) > 0)

FWER(R(t̂)) = P(∃i , i ∈ H0 : pi ≤ t̂)

▶ The probability is taken with respect to P ∈ F

▶ Philosophy : we don’t want any false positive
▶ Choose t̂α such that FWER(R(t̂α)) ≤ α ? (∀P ∈ F)
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Bonferroni method
▶ Bonferroni method: t̂Bonf

α = α
m and RBonf = R

(
t̂Bonf
α

)
[Bonferroni (1936)]

Theorem
For all P ∈ F,

FWER
(
RBonf

)
≤ α

▶ Proof by union bound:

FWER
(
RBonf

)
= P

(
∃i , i ∈ H0 : pi ≤ t̂Bonf

α

)
= P

 ⋃
i∈H0

{
pi ≤ α

m

} ≤
∑

i∈H0

P
(

pi ≤ α

m

)
≤ α

m0
m ≤ α

▶ Adjusted p-value padj
i : smallest level that rejects H0,i . For Bonferroni,

padj
i = 1 ∧ mpi
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Illustration of Bonferroni method
α = 0.2, m = 100FWER(Bonf.) illustration, ↵ = 0.2, m = 100
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k-Family-Wise Error Rate (k-FWER)
A variant

k-FWER(R) = P(V (R) ≥ k)

▶ The probability is taken with respect to P ∈ F

▶ k-Bonferroni method: t̂k-Bonf
α = αk

m , Rk-Bonf = R
(
t̂k-Bonf
α

)
Theorem [Lehmann and Romano (2005)]

For all P ∈ F,
FWER

(
Rk-Bonf

)
≤ α
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k-Family-Wise Error Rate (k-FWER)
A variant

▶ Proof by Markov inequality:

P
(
V
(
Rk-Bonf

)
≥ k

)
≤

E
[
V
(
R
(

αk
m

))]
k

=

∑
i∈H0 E

[
1{pi ≤ αk

m }
]

k

≤ 1
k
∑

i∈H0

αk
m

≤ α
m0
m ≤ α

G. Durand (LMO) Classical error rates and methods 26 / 157



False Discovery Rate (FDR)
FWER too stringent
Especially for some settings where:
▶ m is large
▶ we want a lot of detections,
▶ and we can allow some false positive to do so

False Discovery Proportion (FDP) and FDR

FDP(R) = V (R)
|R| ∨ 1 (random variable)

FDR(R) = E [FDP(R)] (∈ [0, 1])

▶ The expectation is taken with respect to P ∈ F

▶ Choose a t̂α such that FDR(R(t̂α)) ≤ α ?
G. Durand (LMO) Classical error rates and methods 27 / 157



False Discovery Rate (FDR)
Estimating the FDP to derive a procedure

FDP(R(t)) =
∑

i∈H0 1{pi ≤t}
|R(t)| ∨ 1

= m
1
m
∑

i∈H0 1{pi ≤t}
|R(t)| ∨ 1

≤ m
1

m0

∑
i∈H0 1{pi ≤t}

|R(t)| ∨ 1

▶ Main idea: if m0 large, 1
m0

∑
i∈H0 1{pi ≤t} ≲ t by law of large numbers

and super-uniformity
▶ ⇒ F̂DP

BH
(t) = mt

|R(t)|∨1

▶ ⇒ t̂heur
α = sup

{
t ∈ [0, 1] : F̂DP

BH
(t) ≤ α

}
=

sup
{
t ∈ [0, 1] : α

m (|R(t)| ∨ 1) ≥ t
}
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Benjamini-Hochberg procedure (BH)
[Benjamini and Hochberg (1995)]
▶ Sorted p-values: p(1) ≤ · · · ≤ p(m), p(0) = 0 by convention
▶ Traditional definition : k̂BH = max

{
k ∈ J1,mK : p(k) ≤ α k

m

}
,

k̂BH = 0 if set empty, t̂BH
α = α k̂BH

m
▶ Slightly equivalent modification:

k̂BH = max
{

k ∈ J0,mK : p(k) ≤ αk∨1
m

}
, t̂BH

α = α k̂BH∨1
m ,

RBH = R
(
t̂BH
α

)
▶ (really the same except t̂BH

α = α
m if k̂BH = 0, gives the same RBH)

▶ Adjusted p-values : padj
(i) = 1 ∧ minj≥i

mp(j)
j

Lemma∣∣∣RBH
∣∣∣ = k̂BH and t̂heur

α = t̂BH
α

This lemma generalizes in more complex settings where it is useful, see
[Roquain and Wiel (2009)], [Durand (2019)], and the following
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Illustration of BH method
α = 0.2, m = 100FDR(BH) illustration, ↵ = 0.2, m = 100
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Illustration of BH method
m = 10
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Benjamini-Hochberg procedure (BH)
Proof of the Lemma

▶ If k̂BH ≥ 1,

p(k̂BH) ≤ α
k̂BH

m ⇒ ∀i ∈
r

1, k̂BH
z
, p(i) ≤ α

k̂BH

m

⇒
∣∣∣R (t̂BH

α

)∣∣∣ =
∣∣∣∣∣R
(
α

k̂BH ∨ 1
m

)∣∣∣∣∣ =
∣∣∣∣∣R
(
α

k̂BH

m

)∣∣∣∣∣ ≥ k̂BH

▶ Obvious if k̂BH = 0
▶ Reductio ad absurdum: if

∣∣∣R (t̂BH
α

)∣∣∣ ≥ k̂BH + 1 then necessarily

p(k̂BH+1) ≤ t̂BH
α = α k̂BH∨1

m ≤ α
(k̂BH+1)∨1

m which contradicts the
definition of k̂BH
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Benjamini-Hochberg procedure (BH)
Proof of the Lemma

▶ Supremum well-defined because non-empty set, 0 ∈ it
▶ Let Ĝ(t) = α

m (|R(t)| ∨ 1) : nondecreasing and [0, 1] → [0, 1]
▶ Let tn ↗ t̂heur

α , such that Ĝ(tn) ≥ tn,

Ĝ
(
t̂heur
α

)
≥ Ĝ(tn) ≥ tn −→

n→∞
theur
α

so t̂heur
α is a max

▶ So Ĝ
(
Ĝ
(
t̂heur
α

))
≥ Ĝ

(
t̂heur
α

)
so by def Ĝ

(
t̂heur
α

)
≤ t̂heur

α

▶ ⇒ t̂heur
α = Ĝ

(
t̂heur
α

)
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Benjamini-Hochberg procedure (BH)
Proof of the Lemma

▶ First note that p(|R(t)|) ≤ t always
▶ p(|R(t̂heur

α )|) ≤ t̂heur
α = Ĝ

(
t̂heur
α

)
= α

m

(∣∣∣R (t̂heur
α

)∣∣∣ ∨ 1
)

▶ ⇒
∣∣∣R (t̂heur

α

)∣∣∣ ≤ k̂BH ⇒ t̂heur
α ≤ t̂BH

α by def of k̂BH and
nondecreasing composition

▶ Ĝ
(
t̂BH
α

)
= α

m

(∣∣∣R (t̂BH
α

)∣∣∣ ∨ 1
)

= α
m

(
k̂BH ∨ 1

)
= t̂BH

α by previous
result

▶ ⇒ t̂BH
α ≤ t̂heur

α by def of t̂heur
α
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Benjamini-Hochberg procedure (BH)
Proof of the adjusted p-value formula

p(i) ≤ α
k̂BH

m ⇔ k̂BH ≥ i

⇔ ∃j ≥ i , p(j) ≤ α
j
m

⇔ ∃j ≥ i ,
mp(j)

j ≤ α

⇔ min
j≥i

mp(j)
j ≤ α
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Benjamini-Hochberg procedure (BH)

▶ What about FDR control?

Theorem [Benjamini and Hochberg (1995)]

Assume that for all P ∈ F, the (pi)i∈H0 are independent, and they are
independent from the (pi)i∈H1 .
Then for all P ∈ F,

FDR
(
RBH

)
≤ α

m0
m ≤ α
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Interlude
Step-up and step-down procedures
▶ Given a nondecreasing nonnegative sequence τ = (τ1, . . . , τm), the

respective step-up and step-down procedures associated with τ are:

RSU(τ) = R
(
τk̂SU

)
=

{
i ∈ J1,mK : pi ≤ τk̂SU

}
RSD(τ) = R

(
τk̂SD

)
=

{
i ∈ J1,mK : pi ≤ τk̂SD

}
with

k̂SU = max
{

0 ≤ k ≤ m : p(k) ≤ τk
}

k̂SD = max
{

0 ≤ k ≤ m : ∀k ′ ≤ k, p(k′) ≤ τk′

}
▶ Where we let τ0 = τ1 by convention
▶ So τk = τk∨1, ∀0 ≤ k ≤ m
▶ Recall that p(0) = 0 by convention too

▶ The τk are called the critical values
▶ The τk can be random as long as they stay nondecreasing nonnegative
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Interlude
Step-up and step-down procedures

▶ With same proof as before:
▶ ∣∣RSU(τ)

∣∣ = k̂SU

▶ ∣∣RSD(τ)
∣∣ = k̂SD

▶ R
(
t̂Bonf
α

)
= RSU (τ) = RSD (τ) with τi = α

m

▶ R
(
t̂k-Bonf
α

)
= RSU (τ) = RSD (τ) with τi = α k

m

▶ R
(
t̂BH
α

)
= RSU (τ) with τi = α i

m

▶ Remark: for a fixed τ , RSU(τ) is uniformly better than RSD(τ), but
sometimes SD allows FDR control for some larger τ than SU, see
[Döhler, Durand, and Roquain (2018)] and the following
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Benjamini-Hochberg procedure (BH)
Proof of the Theorem

▶ First lemma on SU procedures: let i ∈ J1,mK and the SU procedure
applied to all p-values except pi , with
τ−i = (τ−i

1 , . . . , τ−i
m−1) = (τ2, . . . , τm)

▶ Let p−i
(1) ≤ . . . ≤ p−i

(m−1) be the ordered p-values of this procedure

▶ Let k̂−i = max
{

k : p−i
(k) ≤ τ−i

k

}
be the number of rejections of this

procedure
▶ Then k̂−i ≥ k̂SU − 1 and the three following assertions are equivalent:

(i) pi ≤ τk̂SU .
(ii) pi ≤ τk̂−i +1.
(iii) k̂−i = k̂SU − 1.
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Benjamini-Hochberg procedure (BH)
Proof of the first Lemma

▶ Assume k̂SU ≥ 2, otherwise k̂−i ≥ k̂SU − 1 is trivial
▶ Note that p−i

(k̂SU−1) is always equal to p(k̂SU−1) or p(k̂SU), so
p−i

(k̂SU−1) ≤ τk̂SU = τ−i
k̂SU−1 and k̂−i ≥ k̂SU − 1, by def of k̂−i

▶ (i)⇒(ii) τ nondecreasing and k̂SU ≤ k̂−i + 1
▶ (ii)⇒(iii) By def of k̂−i , p−i

(1), . . . , p
−i
(k̂−i ) ≤ τ−i

k̂−i = τk̂−i +1. So if
pi ≤ τk̂−i +1, at least k̂−i + 1 p-values are ≤ τk̂−i +1, so
p(k̂−i +1) ≤ τk̂−i +1 and k̂SU ≥ k̂−i + 1 by def of k̂SU

▶ (iii)⇒(i)
▶ If k̂−i = k̂SU − 1 then τk̂SU = τ−i

k̂−i

▶ p−i
(k̂−i +1) > τ−i

(k̂−i +1) ≥ τ−i
(k̂−i ) = τk̂SU , · · · , p−i

(m−1) > τk̂SU

▶ ⇒ m − 1 − k̂−i = m − k̂SU p-values that are not pi are > τk̂SU , there
must be m − k̂SU in total that are > τk̂SU , hence pi ≤ τk̂SU
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Benjamini-Hochberg procedure (BH)
Proof of the Theorem

▶ Second lemma on SU procedures:
{pi ≤ τk̂SU , k̂SU = k} = {pi ≤ τk , k̂−i = k − 1}

▶ Decorrelates pi and the rest of the p-values! Allows to use the
independence assumption favorably

▶ Proof:
pi ≤ τk̂SU , k̂SU = k ⇐⇒ pi ≤ τk̂SU , k̂−i = k̂SU − 1, k̂SU = k (i)⇒(iii)

⇐⇒ pi ≤ τk̂SU , k̂−i = k − 1 (i)⇒(iii)
⇐⇒ pi ≤ τk̂−i +1, k̂−i = k − 1 (i)⇔(ii)
⇐⇒ pi ≤ τk , k̂−i = k − 1.
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Benjamini-Hochberg procedure (BH)
▶ Let X ∼ P ∈ F
▶ For i ∈ H0 let k̂−i as in the Lemmas with τ =

(
αk
m

)
k∈J1,mK

FDR
(
RBH

)
= E


∑

i∈H0

1{
pi ≤α k̂BH

m

}
k̂BH ∨ 1


= E

 m∑
k=1

1
k
∑

i∈H0

1{
pi ≤α k̂BH

m

}1{k̂BH=k}


=
∑

i∈H0

m∑
k=1

1
k P

(
pi ≤ α

k̂BH

m , k̂BH = k
)

=
∑

i∈H0

m∑
k=1

1
k P

(
pi ≤ α

k
m , k̂−i = k − 1

)

=
∑

i∈H0

m∑
k=1

1
k P

(
pi ≤ α

k
m

)
P
(
k̂−i = k − 1

)
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Benjamini-Hochberg procedure (BH)
Proof of the Theorem

FDR
(
RBH

)
≤
∑

i∈H0

m∑
k=1

1
kα

k
mP

(
k̂−i = k − 1

)

= α

m
∑

i∈H0

m∑
k=1

P
(
k̂−i = k − 1

)
= α

m
∑

i∈H0

1

= α
m0
m

▶ Note that the only inequality is an equality if pi ∼ U([0, 1]) for all
i ∈ H0 ⇒ a stronger result when uniformity
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Benjamini-Hochberg procedure (BH)
Can we do better than the independent case?

Some dependence conditions [Benjamini and Yekutieli (2001)][Blanchard and

Roquain (2008)]

▶ D ⊆ [0, 1]m is nondecreasing if (x1, . . . , xm) ∈ D and
xi ≤ yi ∀i ∈ J1,mK imply (y1, . . . , ym) ∈ D

▶ Positive Regression Dependent on each one from a Subset (PRDS) :
let S ⊆ J1,mK the subset,

∀D ⊆ [0, 1]m ↗, ∀i ∈ S, ∃fi ,D ↗,P (p ∈ D|pi) = fi ,D(pi) a.s.

▶ weak Positive Regression Dependent on each one from a Subset
(wPRDS) : let S ⊆ J1,mK the subset,

∀D ⊆ [0, 1]m ↗,∀i ∈ S, gi ,D : u 7→ P (p ∈ D|pi ≤ u)

is nondecreasing on {u ∈ [0, 1] : P (pi ≤ u) > 0}
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wPRDS is indeed weaker than PRDS

Proposition [Blanchard and Roquain (2008)]

If the p-values are PRDS on S, they are wPRDS on S.

▶ Fix D and i ∈ S once and for all
▶ Notation: ∀B ∈ A,P (B) > 0, PB : A 7→ P (A|B) = P(A∩B)

P(B) and
Pu = P{pi ≤u},∀u ∈ [0, 1] : P (pi ≤ u) > 0

▶ Likewise, EB and Eu
▶ 2 lemmas:

▶ PB ≪ P and dPB
dP : ω 7→ 1B(ω)

P(B)
▶ Pu (p ∈ D|pi) = P (p ∈ D|pi) = fi,D(pi) a.s.
▶ (The second one is also true if conditioning on B ∈ σ(pi) instead of

{pi ≤ u})
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wPRDS is indeed weaker than PRDS
Proof of first Lemma

PB (A) = P (A ∩ B)
P (B)

=
∫
1A∩B(ω)
P (B) dP(ω)

=
∫
1A(ω)1B(ω)

P(B) dP(ω)
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wPRDS is indeed weaker than PRDS
Proof of second Lemma
▶ Pu (p ∈ D|pi) = Eu

[
1{p∈D}

∣∣∣pi
]

and P (p ∈ D|pi) = E
[
1{p∈D}

∣∣∣pi
]

▶ Let X σ(pi)-measurable

Eu
[
X1{p∈D}

]
=
∫

X (ω)1{p∈D}(ω)dPu(ω)

=
∫

X (ω)1{p∈D}(ω)
1{pi ≤u}(ω)
P (pi ≤ u) dP(ω)

= E
[
X

1{pi ≤u}
P (pi ≤ u)1{p∈D}

]
= E

[
X

1{pi ≤u}
P (pi ≤ u) fi ,D(pi)

] (
X

1{pi ≤u}
P (pi ≤ u) σ(pi)-measurable

)
=
∫

X (ω)fi ,D(pi(ω))
1{pi ≤u}(ω)
P (pi ≤ u) dP(ω)

=
∫

X (ω)fi ,D(pi(ω))dPu(ω)

= Eu [Xfi ,D(pi)]
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wPRDS is indeed weaker than PRDS
Proof of the proposition

▶ Let u < u′ with P (pi ≤ u) > 0

gi ,D(u′) = Pu′ (p ∈ D)

= Eu′

[
1{p∈D}

]
= Eu′

[
Eu′

[
1{p∈D}

∣∣∣pi
]]

= Eu′ [Pu′ (p ∈ D|pi)]
= Eu′ [fi ,D(pi)]

=
∫

fi ,D(pi(ω))
1{pi ≤u′}(ω)
P (pi ≤ u′) dP(ω)

=
∫

fi ,D(pi(ω))
1{pi ≤u}(ω)
P (pi ≤ u′)dP(ω) +

∫
fi ,D(pi(ω))

1{u<pi ≤u′}(ω)
P (pi ≤ u′) dP(ω)
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wPRDS is indeed weaker than PRDS
Proof of the proposition
▶ Let γ = Pu′ (pi ≤ u) = P(pi ≤u)

P(pi ≤u′) ∈ ]0, 1]

∫
fi ,D(pi(ω))

1{pi ≤u}(ω)
P (pi ≤ u′)dP(ω) = γ

∫
fi ,D(pi(ω))

1{pi ≤u}(ω)
P (pi ≤ u) dP(ω)

= γgi ,D(u)

▶ If γ = 1 ⇔ P (u < pi ≤ u′) = 0 then gi ,D(u′) = gi ,D(u)
▶ Else,∫
fi ,D(pi(ω))

1{u<pi ≤u′}(ω)
P (pi ≤ u′) dP(ω) = P (u < pi ≤ u′)

P (pi ≤ u′)

∫
fi ,D(pi(ω))

1{u<pi ≤u′}(ω)
P (u < pi ≤ u′)dP(ω)

= (1 − γ)
∫

fi ,D(pi(ω))
1{u<pi ≤u′}(ω)
P (u < pi ≤ u′)dP(ω)

= (1 − γ)E{u<pi ≤u′} [fi ,D(pi)]

G. Durand (LMO) Classical error rates and methods 49 / 157



wPRDS is indeed weaker than PRDS
Proof of the proposition

▶ gi ,D(u′) = γgi ,D(u) + (1 − γ)E{u<pi ≤u′} [fi ,D(pi)]
▶ fi ,D ↗ so:

E{u<pi ≤u′} [fi ,D(pi)] ≥ fi ,D(u) ≥ E{pi ≤u} [fi ,D(pi)] = gi ,D(u)
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What is wPRDS?

Proposition [Giraud (2021)]

Assume that for all P ∈ F, the (pi)i∈H0 are independent, and they are
independent from the (pi)i∈H1 .
Then, for all P ∈ F, the (pi) are wPRDS with H0 as the subset.

▶ Other examples in [Benjamini and Yekutieli (2001)], [Roquain (2015)],[Giraud
(2021)]
▶ Like one-sided Gaussian p-values with Σij ≥ 0 ∀1 ≤ i , j ≤ m
▶ Or with Σ = ρ1m1

⊤
m + (1 − ρ)Idm, ρ ∈

[
− 1

m−1 , 1
]
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What is wPRDS?
Proof of the Proposition
▶ Fix P ∈ F, D nondecreasing and i ∈ H0
▶ Key point: pi is independent from (p1, . . . , pi−1, pi+1, . . . , pm) so for

appropriate u:

P (p ∈ D|pi ≤ u) = P (p ∈ D and pi ≤ u)
P (pi ≤ u) =

E
[
1{p∈D}1{pi ≤u}

]
P (pi ≤ u)

=
∫
1(x1,...,xi−1,xi ,xi+1,...,xm)∈D

1xi ≤u
P (pi ≤ u)dPp(x1, . . . , xi−1, xi , xi+1, . . . , xm)

(transfer formula)

=
∫
1(x1,...,xi−1,xi ,xi+1,...,xm)∈D

1xi ≤u
P (pi ≤ u)dPpi (xi)dPp−i (x1, . . . , xi−1, xi+1, . . . , xm)

(key observation)

=
∫

P ((x1, . . . , xi−1, pi , xi+1, . . . , xm) ∈ D|pi ≤ u) dPp−i (x1, . . . , xi−1, xi+1, . . . , xm)

(Fubini) with Pp the law of p, Ppi = L(pi) the law of pi and Pp−i the law
of p−i = (p1, . . . , pi−1, pi+1, . . . , pm)
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What is wPRDS?
Proof of the Proposition

▶ ⇒ only need to show that
u 7→ P ((x1, . . . , xi−1, pi , xi+1, . . . , xm) ∈ D|pi ≤ u) nondecreasing for
any fixed (x1, . . . , xi−1, xi+1, . . . , xm)

▶ = Eu [g(pi)] with g : xi 7→ 1{(x1,...,xi−1,xi ,xi+1,...,xm)∈D} nondecreasing
because D is

▶ same proof as before for proving that u 7→ Eu [fi ,D(pi)] was
nondecreasing
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Benjamini-Hochberg procedure (BH)
Can we do better than the independent case?

Theorem [Benjamini and Yekutieli (2001)]

Assume that for all P ∈ F, the (pi) are wPRDS with H0 as the subset.
Then for all P ∈ F,

FDR
(
RBH

)
≤ α

m0
m ≤ α

▶ Previous Theorem is not useless because of:
▶ the equality case
▶ the proof ideas (and Lemmas) that are reused in more complex

procedures [Roquain and Wiel (2009)], [Döhler, Durand, and Roquain (2018)]
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Benjamini-Hochberg procedure (BH)
Proof of the Theorem

▶ As before,

FDR
(
RBH

)
=
∑

i∈H0

m∑
k=1

1
k P

(
pi ≤ α

k̂BH

m , k̂BH = k
)

=
∑

i∈H0

m∑
k=1

1
k P

(
pi ≤ α

k
m , k̂BH = k

)

=
∑

i∈H0

m∑
k=ki

1
k Pα k

m

(
k̂BH = k

)
P
(

pi ≤ α
k
m

)

≤ α

m
∑

i∈H0

m∑
k=ki

Pα k
m

(
k̂BH = k

)

with ki = min
{

k ∈ J1,mK : P
(
pi ≤ α k

m

)
> 0

}
, for all i ∈ H0 (ki = +∞

and empty sum = 0 if empty set)
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Benjamini-Hochberg procedure (BH)
Proof of the Theorem

FDR
(
RBH

)
≤ α

m
∑

i∈H0

m∑
k=ki

(
Pα k

m

(
k̂BH ≤ k

)
− Pα k

m

(
k̂BH ≤ k − 1

))

≤ α

m
∑

i∈H0

m∑
k=ki

(
Pα k+1

m

(
k̂BH ≤ k

)
− Pα k

m

(
k̂BH ≤ k − 1

))
≤ α

m
∑

i∈H0

Pα m+1
m

(
k̂BH ≤ m

)
≤ α

m0
m ≤ α

by wPRDS: ∀k ∈ N, {k̂BH ≤ k} = {p ∈ D} with D the preimage of
] − ∞, k] under the function that maps p to k̂BH which is coordinate-wise
nonincreasing, hence D is nondecreasing
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Step-up procedures
Can we go even beyond, to any dependency?

Theorem [Giraud (2021)]

Let τ = (τ1, . . . , τm) a nondecreasing nonnegative sequence and consider
the step-up procedure associated with τ .
Then for all P ∈ F,

FDR
(
RSU(τ)

)
≤ m0

∑
j≥1

τj∧m
j(j + 1)
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Step-up procedures
Proof of the Theorem

▶ As before,

FDR
(
RSU(τ)

)
= E


∑

i∈H0

1{pi ≤τk̂SU}

k̂SU ∨ 1


=
∑

i∈H0

E
[
1{pi ≤τk̂SU}

1
k̂SU ∨ 1

]

▶ For k ≥ 1,
1
k = 1

k − 1
k+1 + 1

k+1 − 1
k+2 + · · · =

∑
j≥k

1
j(j+1) =

∑
j≥1

1j≥k
j(j+1) so

FDR
(
RSU(τ)

)
=
∑

i∈H0

E

1{pi ≤τk̂SU}
∑
j≥1

1j≥k̂SU≥1
j(j + 1)


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Step-up procedures
Proof of the Theorem

▶ By Fubini,

FDR
(
RSU(τ)

)
=
∑

i∈H0

∑
j≥1

E
[
1{pi ≤τk̂SU}

1j≥k̂SU≥1
j(j + 1)

]

≤
∑

i∈H0

∑
j≥1

E
[
1{pi ≤τj∧m}

1j≥k̂SU≥1
j(j + 1)

]

≤
∑

i∈H0

∑
j≥1

1
j(j + 1)E

[
1{pi ≤τj∧m}

]
≤
∑

i∈H0

∑
j≥1

τj∧m
j(j + 1) = m0

∑
j≥1

τj∧m
j(j + 1)
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Benjamini-Yekutieli procedure (BY)
FDR control under any dependency
▶ The Benjamini-Yekutieli procedure (BY) is the step-up procedure

using τk = αk
mHm

, Hm =
∑m

j=1
1
j : uniformly worst than BH

▶ RBY = RSU
((

αk
mHm

)
k∈J1,mK

)
▶ Adjusted p-values : padj

(i) = 1 ∧ minj≥i
mHmp(j)

j

Corollary [Benjamini and Yekutieli (2001)]

For all P ∈ F,
FDR

(
RBY

)
≤ α

m0
m ≤ α

m0
∑
j≥1

τj∧m
j(j + 1) = αm0

mHm

m−1∑
j=1

1
j + 1 + m

∞∑
j=m

1
j(j + 1)


= αm0

mHm

 m∑
j=2

1
j + m 1

m

 = αm0
mHm

Hm
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Adaptivity to π0

▶ π0 = m0
m

▶ Previous guarantees hold with “oracle” versions of the procedures
using m0 = |H0| instead of m (⇔ using α

π0
instead of α)

▶ Ex: “oracle” Bonferroni: P(∃i , i ∈ H0 : pi ≤ α
m0

) ≤ α

▶ Ex: “oracle BH”, SU with τk = αk
m0

▶ ⇒ Core idea: estimate m0 or π0 and somehow plug m̂0 or π̂0 in the
procedure

G. Durand (LMO) Adaptivity 62 / 157



Holm-Bonferroni procedure (HB)
[Holm (1979)]

▶ Core idea: if p(1) ≤ α
m , (1) ∈ H1, m0 ≤ m − 1, and we could re-apply

Bonferroni but with m − 1 instead of m
▶ Repeat this sequentially until stop
▶ This formalizes as a SD procedure with τk = α

m−k+1

▶ RHB = RSD
((

α
m−k+1

)
k∈J1,mK

)
= R

(
α

m−k̂HB+1

)
▶ k̂HB = max

{
k ∈ J0,mK : ∀k ′ ≤ k, p(k′) ≤ α

m−k′+1

}
▶ Implicit estimation of m0 by m̂0 = m ∧

(
m − k̂HB + 1

)
▶ Adjusted p-values : padj

(i) = 1 ∧ maxj≤i(m − j + 1)p(j)
▶ Uniformly rejects more than Bonferroni
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Holm-Bonferroni procedure (HB)
FWER control under any dependency

Theorem [Holm (1979)]

For all P ∈ F,
FWER

(
RHB

)
≤ α

▶ ⇒ HB has same guarantees than Bonferroni (and is almost as easy,
computationally) ⇒ Bonferroni should never be used [Aickin and Gensler
(1996)]
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Holm-Bonferroni procedure (HB)
Proof of the Theorem

▶ As discussed before, FWER
(
R
(

α
m0

))
≤ α so

P
(∣∣∣R ( α

m0

)
∩ H0

∣∣∣ = 0
)

≥ 1 − α

▶ Assume
∣∣∣R ( α

m0

)
∩ H0

∣∣∣ = 0 ⇔ R
(

α
m0

)
⊆ H1

⇔ H0 ⊆=
{

i : pi >
α

m0

}
▶ Goal: to show that m0 ≤ m − k̂HB + 1, we’ll then have

RHB ⊆ R
(

α
m0

)
⊆ H1 which will conclude
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Holm-Bonferroni procedure (HB)
Proof of the Theorem

▶ 2 proofs, first by recursion:
▶ ∀k ≤ k̂HB, m0 ≤ m − k + 1, k = 0, 1 obvious, assume it’s true for

k < k̂HB

▶ For all k ′ ≤ k we have:

p(k′) ≤ p(k) ≤ α

m − k + 1 ≤ α

m0
,

▶ So
∣∣∣R ( α

m0

)∣∣∣ ≥ k so |H1| ≥ k so m0 ≤ m − k = m − (k + 1) − 1
▶ The original proof:

▶ There’s a true null (> α
m0

) in the first m − m0 + 1 hypotheses, so
p(m−m0+1) >

α
m0

= α
m−(m−m0+1)+1

▶ So by definition k̂HB ≤ m − m0

The proof actually gives a better estimator of m0: just m − k̂HB, but that
won’t reject more hypotheses (or else contradiction with the def of k̂HB)
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Holm-Bonferroni procedure (HB)
Need for step-down
▶ What about the step-up procedure with same critical values?
▶ m = 2, H0 = J1,mK:

FWER
(
RSU ((α

2 , α
)))

= P
(
p(1) ≤ α

2 or p(2) ≤ α
)

▶ p1 = p ∼ U([0, 1]) and p2 = 1 − p: extreme negative correlation
▶ FWER

(
RSU ((α

2 , α
)))

= P
(
p(1) ≤ α

2 or 1 − α ≤ p(1)
)

▶ L
(
p(1)

)
= U

([
0, 1

2

])
: ∀x ∈

[
0, 1

2

]
,

P
(
p(1) ≤ x

)
= P

((
p ≤ x and p ≤ 1

2

)
or
(

1 − p ≤ x and p ≥ 1
2

))
= P

(
p ≤ x ∧ 1

2

)
+ P

(
p ≥ (1 − x) ∨ 1

2

)
= P (p ≤ x) + P (p ≥ 1 − x)
= P (p ≤ x) + P (p ≥ 1 − x) = 2x
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Holm-Bonferroni procedure (HB)
Need for step-down
▶ If α

2 ≤ 1 − α ⇔ α ≤ 2
3 , FWER

(
RSU ((α

2 , α
)))

=

P
(
p(1) ≤ α

2

)
+ P

(
1 − α ≤ p(1)

)
= α+ P

(
1 − α ≤ p(1)

)
▶ P

(
1 − α ≤ p(1)

)
= 0 if α ≤ 1

2 ,

= 1 − P
(
1 − α ≥ p(1)

)
= 1 − 2(1 − α) = 2α− 1 if α ≥ 1

2

▶ If α ≥ 2
3 , FWER

(
RSU ((α

2 , α
)))

= 1

⇒ FWER
(

RSU
((

α

2 , α
)))

=


α if α ∈

]
0, 1

2

[
3α− 1 if α ∈

[
1
2 ,

2
3

[
1 if α ∈

[
2
3 , 1
[

▶ Remark: for this model, FWER is saturated for Bonf and HB:
FWER

(
RBonf

)
= FWER

(
RHB

)
= P

(
p(1) ≤ α

2

)
= α
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Holm-Bonferroni procedure (HB)
2.105 replications
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Storey-BH
Adaptive FDR control

▶ [Storey, Taylor, and Siegmund (2004)]

▶ Fix λ ∈]0, 1[, m̂0 =
∑m

i=1 1{pi >λ}+1
1−λ = m−|R(λ)|+1

1−λ

▶ Idea : large p-values are mostly null, and nulls are super-uniform, so∑m
i=1 1{pi >λ} ≈

∑m0
i=1 1{pi >λ} ≳ (1 − λ)m0

▶ “+1” for m̂0 > 0 and for technical reasons
▶ Storey-BH is the SU procedure with τk = min

(
α k

m̂0
, λ
)
, k ≥ 1 (recall

τ0 = τ1 so that τk = τk∨1)
▶ k̂St-BH = max

{
k ∈ J0,mK : p(k) ≤ min

(
αk∨1

m̂0
, λ
)}

▶ t̂St-BH
α = τk̂St-BH = min

(
α k̂St-BH∨1

m̂0
, λ
)
, RSt-BH = R

(
t̂St-BH
α

)
▶ min(·, λ) above to avoid overfitting: you don’t look at the same

p-values for estimating m0 and for rejecting hypotheses
▶ Up to this, Storey-BH is BH but with m̂0 instead of m
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Storey-BH

▶ As before, a link with FDP estimation:
▶ F̂DP

St-BH
(t) = m̂0t

|R(t)|∨1 if t ≤ λ, = 1 if t > λ

▶ t̂St-heur
α = sup

{
t ∈ [0, 1] : F̂DP

St-BH
(t) ≤ α

}
=

sup
{

t ∈ [0, 1] : Ĝλ(t) ≥ t
}

with Ĝλ(t) = α
m̂0

(|R(t)| ∨ 1) ∧ λ

Lemma
t̂St-heur
α = t̂St-BH

α
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Storey-BH
Proof of the Lemma

▶ Similar to before, supremum well-defined, and Ĝλ(t) nondecreasing
and [0, 1] → [0, 1] ⇒ t̂St-heur

α is a max and t̂St-heur
α = Ĝλ

(
t̂St-heur
α

)
▶ Remember that p(|R(t)|) ≤ t and note that, here, Ĝλ(t) = τ|R(t)|,

combine this:
p(|R(t̂St-heur

α )|) ≤ t̂St-heur
α = Ĝλ

(
t̂St-heur
α

)
= τ|R(t̂St-heur

α )|

⇒
∣∣∣R (t̂St-heur

α

)∣∣∣ ≤ k̂St-BH

⇒ t̂St-heur
α = Ĝλ

(
t̂St-heur
α

)
= τ|R(t̂St-heur

α )| ≤ τk̂St-BH
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Storey-BH
Proof of the Lemma

▶ Conversely, using that
∣∣R (τk̂St-BH

)∣∣ = k̂St-BH (property of SU),

Ĝλ

(
τk̂St-BH

)
= α

m̂0

(∣∣R (τk̂St-BH
)∣∣ ∨ 1

)
∧ λ = α

k̂St-BH ∨ 1
m̂0

∧ λ = τk̂St-BH

▶ So τk̂St-BH ≤ t̂St-heur
α by definition of t̂St-heur

α
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Storey-BH
FDR control

Theorem [Storey, Taylor, and Siegmund (2004)]

Assume that for all P ∈ F, the (pi)i∈H0 are independent and ∼ U([0, 1]),
and they are independent from the (pi)i∈H1 .
Then for all P ∈ F,

FDR
(
RSt-BH

)
≤ α(1 − λm0) ≤ α

▶ Proof by martingale techniques: the stochastic process is important
▶ Need true uniformity under H0 !

Three Lemmas
▶ V (R(t)) ∼ B(m0, t) for all t ∈ [0, 1]
▶ The process

(
V (R(t))

t

)
t∈]0,1]

is a reverse-time martingale w.r.t. the

filtration (Ft)t∈]0,1] with Ft = σ

((
1{pi ≤t′}

)
i∈J1,mK,t≤t′≤1

)
, t ∈ [0, 1]

▶ t̂St-BH
α is a stopping time (in reverse) w.r.t. (Ft)t∈[0,1]
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Storey-BH
Proof of the First Lemma

▶ V (R(t)) =
∑

i∈H0 1{pi ≤t}
▶ 1{pi ≤t}, i ∈ H0, are i.i.d. ∼ B(t)
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Storey-BH
Proof of the Second Lemma
▶ We want to prove that for 0 < s ≤ t, E

[
V (R(s))

s

∣∣∣Ft
]

= V (R(t))
t

▶ E [V (R(s))|Ft ] =
∑

i∈H0 E
[
1{pi ≤s}

∣∣∣Ft
]

so proving
E
[
1{pi ≤s}

∣∣∣Ft

]
s =

1{pi ≤t}
t for i ∈ H0 is sufficient

▶ By independence, for i ∈ H0,

E
[
1{pi ≤s}

∣∣∣Ft
]

= E
[
1{pi ≤s}

∣∣∣∣σ ((1{pj ≤t′}
)

j∈J1,mK,t≤t′≤1

)]
= E

[
1{pi ≤s}

∣∣∣∣σ ((1{pi ≤t′}
)

t≤t′≤1

)]

▶ To have E
[
1{pi ≤s}

s

∣∣∣∣Ft

]
=

1{pi ≤t}
t we need

E
[
1A

1{pi ≤s}
s

]
= E

[
1A

1{pi ≤t}
t

]
for all A ∈ σ

((
1{pi ≤t′}

)
t≤t′≤1

)
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Storey-BH
Proof of the Second Lemma

▶ Which is Ps (A) = Pt (A) for all A ∈ σ

((
1{pi ≤t′}

)
t≤t′≤1

)
▶ By the Sierpiński–Dynkin’s π-λ theorem (“lemme des classes

monotones”), for all A in a π-system that generates
σ

((
1{pi ≤t′}

)
t≤t′≤1

)
is sufficient

σ

((
1{pi ≤t′}

)
t≤t′≤1

)
= σ

⋃
t′≥t

σ
(
1{pi ≤t′}

)
= σ

⋃
t′≥t

1−1
{pi ≤t′} (B(R))


▶ 1−1

{pi ≤t′} (B(R)) = {∅, {pi ≤ t ′}, {pi ≤ t ′}c,Ω}
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Storey-BH
Proof of the Second Lemma

▶ σ

((
1{pi ≤t′}

)
t≤t′≤1

)
= σ ({{pi ≤ t ′}, t ′ ≥ t})

▶ {{pi ≤ t ′}, t ′ ≥ t} is a π-system:
{pi ≤ t ′} ∩ {pi ≤ t ′′} = {pi ≤ t ′ ∧ t ′′}

▶ Ps ({pi ≤ t ′}) = Ps ({pi ≤ s}) = 1 = Pt ({pi ≤ t}) =
Pt ({pi ≤ t ′})
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Storey-BH
Proof of the Third Lemma, due to Romain Périer
▶ If t > λ, {t̂St-BH

α ≥ t} = ∅ ∈ Ft
▶ Let t ≤ λ

{t̂St-BH
α ≥ t} = {τk̂St-BH ≥ t}

=
{
α

k̂St-BH ∨ 1
m̂0

∧ λ ≥ t
}

=
{
α

k̂St-BH ∨ 1
m̂0

≥ t
}

because t ≤ λ

=
{

k̂St-BH ∨ 1 ≥ m̂0t
α

}
=
{

k̂St-BH ∨ 1 ≥
⌈m̂0t
α

⌉}
=
{

1 ≥
⌈m̂0t
α

⌉}
∪
{

k̂St-BH ≥
⌈m̂0t
α

⌉}

▶ with
{

1 ≥
⌈

m̂0t
α

⌉}
∈ Fλ ⊆ Ft
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Storey-BH
Proof of the Third Lemma, due to Romain Périer
▶ Let M = (1 − λ)−1J1,m + 1K the finite set m̂0 belongs to

{
k̂St-BH ≥

⌈m̂0t
α

⌉}
=
{

∃k ≥
⌈m̂0t
α

⌉
, p(k) ≤ τk

}
=
{

∃k ≥
⌈m̂0t
α

⌉
,

m∑
i=1

1{pi ≤τk} ≥ k
}

=

∃k ≥
⌈m̂0t
α

⌉
,

m∑
i=1

1{
pi ≤α k∨1

m̂0
∧λ

} ≥ k


=

⋃
m0∈M

{m̂0 = m0} ∩

∃k ≥
⌈m0t
α

⌉
,

m∑
i=1

1{
pi ≤α k∨1

m0
∧λ

} ≥ k


=

⋃
m0∈M

{m̂0 = m0} ∩
⋃

k≥⌈ m0t
α ⌉


m∑

i=1
1{

pi ≤α k∨1
m0

∧λ

} ≥ k


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Storey-BH
Proof of the Third Lemma, due to Romain Périer

▶ {m̂0 = m0} ∈ Fλ ⊆ Ft for all m0 ∈ M

▶


m∑
i=1

1{
pi ≤α k∨1

m0
∧λ

} ≥ k

 ∈ Fα k∨1
m0

∧λ for all m0 ∈ M, k ≥
⌈m0t

α

⌉
, but:

α
k ∨ 1
m0

∧ λ ≥ α
k

m0
∧ λ

≥ α

m0

⌈m0t
α

⌉
∧ λ

≥ α

m0

m0t
α

∧ λ

≥ t ∧ λ = t

▶ So Fα k∨1
m0

∧λ ⊆ Ft too
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Storey-BH
Proof of the Theorem

▶ t̂St-BH
α = Ĝλ

(
t̂St-BH
α

)
= α

m̂0

(∣∣∣R (t̂St-BH
α

)∣∣∣ ∨ 1
)

∧ λ

▶ If F̂DP
St-BH

(λ) ≥ α, m̂0λ
|R(λ)|∨1 ≥ α so t̂St-BH

α = α
m̂0

(∣∣∣R (t̂St-BH
α

)∣∣∣ ∨ 1
)

▶ And so FDP
(
R
(
t̂St-BH
α

))
= V(R(t̂St-BH

α ))
|R(t̂St-BH

α )|∨1 = αV(R(t̂St-BH
α ))

m̂0 t̂St-BH
α

=

α 1−λ
m−|R(λ)|+1

V(R(t̂St-BH
α ))

t̂St-BH
α

▶ If F̂DP
St-BH

(λ) < α then t̂St-BH
α = λ and 1

|R(λ)|∨1 < α 1−λ
m−|R(λ)|+1

1
λ

▶ And so FDP
(
R
(
t̂St-BH
α

))
= FDP (R(λ)) < α 1−λ

m−|R(λ)|+1
V (R(λ))

λ
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Storey-BH
Proof of the Theorem

FDR
(
R
(
t̂St-BH
α

))
= E

FDP
(
R
(
t̂St-BH
α

))
1{

F̂DP
St-BH

(λ)≥α

}
+ E

FDP
(
R
(
t̂St-BH
α

))
1{

F̂DP
St-BH

(λ)<α

}
≤ E

α 1 − λ

m − |R(λ)| + 1
V
(
R
(
t̂St-BH
α

))
t̂St-BH
α

1{
F̂DP

St-BH
(λ)≥α

}
E

α 1 − λ

m − |R(λ)| + 1
V (R(λ))

λ
1{

F̂DP
St-BH

(λ)<α

}
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Storey-BH
Proof of the Theorem

E

α 1 − λ

m − |R(λ)| + 1
V
(
R
(
t̂St-BH
α

))
t̂St-BH
α

1{
F̂DP

St-BH
(λ)≥α

}
= E

E
α 1 − λ

m − |R(λ)| + 1
V
(
R
(
t̂St-BH
α

))
t̂St-BH
α

1{
F̂DP

St-BH
(λ)≥α

}∣∣∣∣∣∣Fλ


= E

α 1 − λ

m − |R(λ)| + 1E

V
(
R
(
t̂St-BH
α

))
t̂St-BH
α

∣∣∣∣∣∣Fλ

1{
F̂DP

St-BH
(λ)≥α

}
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Storey-BH
Proof of the Theorem

▶ By-product of optional stopping theorem: V(R(t∨t̂St-BH
α ))

t∨t̂St-BH
α

is also a
reverse-time martingale w.r.t. (Ft)t∈]0,1]

▶ Also note that λ ≥ t̂St-BH
α ≥ τ1 = α

m̂0
∧ λ ≥ α(1−λ)

m+1 ∧ λ a.s.

E

V
(
R
(
t̂St-BH
α

))
t̂St-BH
α

∣∣∣∣∣∣Fλ

 = E

V
(
R
((

α(1−λ)
m+1 ∧ λ

)
∨ t̂St-BH

α

))
(

α(1−λ)
m+1 ∧ λ

)
∨ t̂St-BH

α

∣∣∣∣∣∣Fλ


=

V
(
R
(
λ ∨ t̂St-BH

α

))
λ ∨ t̂St-BH

α

= V (R (λ))
λ
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Storey-BH
Proof of the Theorem

FDR
(
R
(
t̂St-BH
α

))
≤ αE

[ 1 − λ

m − |R(λ)| + 1
V (R(λ))

λ

]
≤ αE

[ 1 − λ

m0 − V (R(λ)) + 1
V (R(λ))

λ

]
≤ α

m0∑
k=1

1 − λ

λ

k
m0 − k + 1

(
m0
k

)
λk(1 − λ)m0−k

≤ α
m0∑

k=1

(
m0

k − 1

)
λk−1(1 − λ)m0−k+1

≤ α
m0−1∑
k=0

(
m0
k

)
λk(1 − λ)m0−k

≤ α(1 − λm0) ≤ α

▶ Proof can be adapted to prove BH a 3rd time, but requires uniformity
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Adaptivity to signal strength and location
Introduction to hypothesis weighting

▶ SU and SD procedures are implicitly adaptive to signal strength:
strong signal ⇒ small pi ’s ⇒ large k̂SU/k̂SD

▶ What if we have prior knowledge about the hypotheses likely to be
(strong) signal?

▶ We can encode that into weights and plug them into the procedure:
▶ Compare pi to wiτk instead of τk , wi ≥ 0, with a bounding condition

on the wi ’s
▶ If i likely to be (strong) signal: small wi , which makes larger wj ’s

affordable for other hypotheses
▶ Weights can be random
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weighted-Benjamini-Hochberg procedure (wBH)
[Genovese, Roeder, and Wasserman (2006)]

▶ Let w1, . . . ,wm nonnegative random variables and consider the
weighted FDP estimator F̂DP

wBH
(t) = mt∑m

i=1 1{pi ≤wi t}∨1

▶ Let t̂w -heur
α = sup

{
t ∈ [0, 1] : α

m

(∑m
i=1 1{pi ≤wi t} ∨ 1

)
≥ t

}
▶ Alternatively, let

qi =


0 if pi = 0,wi = 0
2 if pi ̸= 0,wi = 0

pi
wi

if wi ̸= 0

▶ Remarks:
▶ qi ≤ t if and only if pi ≤ wi t
▶ Not the same ordering for the qi ’s than the pi ’s: denote it

q⟨1⟩ ≤ . . . ≤ q⟨m⟩
▶ The weighted p-values qi ’s are not valid p-values because not

necessarily super-uniform under the null
▶ All previous deterministic results on SU procedures hold nonetheless
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weighted-Benjamini-Hochberg procedure (wBH)

▶ wBH can be defined as BH applied to the qi ’s:
k̂wBH = max

{
k ∈ J0,mK, q⟨k⟩ ≤ αk∨1

m

}
, t̂wBH

α = α k̂wBH∨1
m and

RwBH =
{

i : qi ≤ t̂wBH
α

}
=
{

i : pi ≤ wi t̂wBH
α

}
▶ As before, t̂w -heur

α = t̂wBH
α , because

t̂w -heur
α = sup

{
t ∈ [0, 1] : α

m

(∑m
i=1 1{qi ≤t} ∨ 1

)
≥ t

}
, same proof but

with qi instead of pi
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weighted-Benjamini-Hochberg procedure (wBH)
FDR control

Theorem [Genovese, Roeder, and Wasserman (2006)]

Assume that for all P ∈ F, the (pi)i∈H0 are independent, that they are
independent from the (pi)i∈H1 , that the (wi)i∈H0 are independent, that
they are independent from the (wi)i∈H1 , that (pi) and (wi) are
independent, and finally that the wi ’s are integrable with

∑m
i=1 E [wi ] ≤ m.

Then for all P ∈ F,

FDR
(
RwBH

)
≤ α

∑
i∈H0 E [wi ]

m ≤ α.

▶ Includes the case of deterministic (and possibly grouped) weights
based on prior knowledge

Lemma
Under the same conditions, for all i ∈ H0, P (qi ≤ t) ≤ tE [wi ].
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weighted-Benjamini-Hochberg procedure (wBH)
Proofs

P (qi ≤ t) = E [P (qi ≤ t|wi)]
= E [P (pi ≤ twi |wi)]
≤ E [twi ] by independence and super-uniformity
≤ tE [wi ]

▶ For FDR control, same proof as BH for independent case, thanks to
all deterministic Lemmas on SU procedures:

FDR
(
RwBH

)
=
∑

i∈H0

m∑
k=1

1
k P

(
qi ≤ α

k
m

)
P
(
k̂−i = k − 1

)

≤ α

m
∑

i∈H0

E [wi ]
m∑

k=1
P
(
k̂−i = k − 1

)
≤ α

∑
i∈H0 E [wi ]

m ≤ α

▶ Weights are independent of the data here, for adaptive weights see
e.g. [Roquain and Wiel (2009)], [Durand (2019)]
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An example of discrete test
Binomial test

▶ The simplest example: X1, . . . ,Xn i.i.d ∼ B(p), p ∈ [0, 1]
▶ X =

∑n
i=1 Xi

▶ F = {B(n, p), p ∈ [0, 1]}, discrete distributions
▶ Is the coin rigged? ⇔ H0 =

{
B
(
n, 1

2

)}
▶ p̂i(X ), p̄i(X ), p̆i(X ) also discrete, but p̆i(X ) not the best suited for

bilateral tests
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Another example of discrete test
Fisher’s exact test

▶ Testing association between an allele and a phenotype of interest

Phenotype 1 Phenotype 2 Total
Allele A n1,A n2,A nA
Allele a n1,a n2,a na
Total n1 n2 N

▶ For large samples, χ2 approximation:
(n1,A− n1nA

N )2

n1nA
N

+ (n1,a− n1na
N )2

n1na
N

+ (n2,A− n2nA
N )2

n2nA
N

+ (n2,a− n2na
N )2

n2na
N

follows χ2(1)
distribution under H0

▶ What if we want an exact test ?
▶ Under H0, conditionally to n1 and nA,

n1,A ∼ H(N, n1, nA) = H(N, nA, n1), hypergeometric hence discrete
▶ p̂i(X ), p̄i(X ), p̆i(X ) also discrete, but p̆i(X ) not the best suited for

bilateral tests
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Generic construction of p-values with discreteness
Following the idea of “the probability of an event at least as extreme as”
▶ Assume we have at hand a test statistic Ti : X −→ R such that

∀P ∈ H0,i , ∃Ai ,P countable or finite such that Ti(X ) ∈ Ai ,P a.s.
▶ Then let

p̌i(X ) = sup
P∈H0,i

∑
k∈Ai,P

PZ∼P (Ti (Z)=k)≤PZ∼P
Z⊥X

(Ti (Z)=Ti (X)|X)

PZ∼P
Z⊥X

(Ti(Z ) = k)

= sup
P∈H0,i

PZ∼P (Ti(Z ) ∈ {k ∈ Ai ,P : (Ti)#P({k}) ≤ (Ti)#P({Ti(X )})}|X )

= sup
P∈H0,i

∑
k∈Ai,P

(Ti )#P({k})≤(Ti )#P({Ti (X)})

(Ti)#P({k})

= sup
P∈H0,i

(Ti)#P ({k ∈ Ai ,P : (Ti)#P({k}) ≤ (Ti)#P({Ti(X )})})

▶ p̌i = P( to realize a value of the support lesser or as common as
Ti(X ))

▶ Knowledge of the P, P ∈ H0,i , is required to compute p̌i
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Generic construction of p-values with discreteness
Following the idea of “the probability of an event at least as extreme as”

Theorem
p̌i is an appropriate p-value, that is, it is super-uniform under the null:
Let Q ∈ H0,i , X ∼ Q, then

∀x ∈ R,P (p̌i(X ) ≤ x) ≤ u(x). (4)

▶ This is actually more general than with discrete support given that
discrete and ⊆ R ⇒ countable but not the reverse

▶ Proof:
▶ As before, p̌i(X ) ≥ p̌i ,Q(X ) =

∑
k∈Ai,Q

(Ti )#Q({k})≤(Ti )#Q({Ti (X)})

(Ti)#Q({k})

so proving p̌i ,Q(X ) ⪰ U([0, 1]) is sufficient
▶ As before, p̌i ,Q(X ) ∈ [0, 1] a.s. and right-continuity of the c.d.f so we

only need to check (4) for x ∈]0, 1[
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Generic construction of p-values with discreteness
Proof

▶ Note that

p̌i ,Q(X ) ∈ Si ,Q =


∑

k∈Ai,Q
(Ti )#Q({k})≤(Ti )#Q({ℓ})

(Ti)#Q({k}) : ℓ ∈ Ai ,Q


a.s., and Si ,Q is countable or finite
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Generic construction of p-values with discreteness
Proof
▶ Also note that for x ∈ Si ,Q, x =

∑
k∈Ai,Q

(Ti )#Q({k})≤(Ti )#Q({ℓ})

(Ti)#Q({k}),

ℓ ∈ Ai ,Q, the c.d.f. of si ,Q(X ) in x is

P (p̌i ,Q(X ) ≤ x) = P

 ∑
k∈Ai,Q

(Ti )#Q({k})≤(Ti )#Q({Ti (X)})

(Ti)#Q({k}) ≤
∑

k∈Ai,Q
(Ti )#Q({k})≤(Ti )#Q({ℓ})

(Ti)#Q({k})


= P ((Ti)#Q({Ti(X )}) ≤ (Ti)#Q({ℓ}))
= P (Ti(X ) ∈ {k ∈ Ai ,Q : (Ti)#Q({k}) ≤ (Ti)#Q({ℓ})})
= (Ti)#Q ({k ∈ Ai ,Q : (Ti)#Q({k}) ≤ (Ti)#Q({ℓ})})
=

∑
k∈Ai,Q

(Ti )#Q({k})≤(Ti )#Q({ℓ})

(Ti)#Q({k}) = x

▶ ⇒ The c.d.f. of p̌i ,Q(X ) is the identity on the support of p̌i ,Q(X )
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Generic construction of p-values with discreteness
Proof

▶ Let x ∈]0, 1[, if x < x ′ for all x ′ ∈ Si ,Q then P (p̌i ,Q(X ) ≤ x) = 0 ≤ x
▶ Else let

¯
x = sup{x ′ ∈ Si ,Q, x ′ ≤ x} and note that

P (p̌i ,Q(X ) ≤ x) = P (p̌i ,Q(X ) ≤
¯
x)

▶ If
¯
x ∈ Si ,Q (i.e. it’s a max, e.g. if Ai ,Q is finite), then

P (p̌i ,Q(X ) ≤
¯
x) =

¯
x ≤ x

▶ Else, P (p̌i ,Q(X ) ≤
¯
x) = P (p̌i ,Q(X ) <

¯
x) = limt→

¯
x

t<
¯
x
P (p̌i ,Q(X ) < t) by

left-continuity
▶ Let tn ∈ {x ′ ∈ Si ,Q, x ′ ≤ x}, tn →

¯
x ,

P (p̌i ,Q(X ) < tn) ≤ P (p̌i ,Q(X ) ≤ tn) = tn ≤ x
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Generic construction of p-values with discreteness
Corollary
If, for all P ∈ H0,i , (Ti)#P does not depend on P, and if Ai = Ai ,P is
finite, then Si = Si ,P is finite too and we can order its elements
x1 < · · · < xN = 1 for some N and describe the c.d.f. of p̌i(X ) really
simply:

∀P ∈ H0,i ,X ∼ P, ∀x ∈ R,

P (p̌i(X ) ≤ x) =


0 if x < x1

xn if xn ≤ x < xn+1, n < N
1 if x ≥ 1

(5)

▶ Denote k1, . . . , kD the distinct elements of Ai and order
(Ti)#P ({k·})(1) ≤ . . . ≤ (Ti)#P ({k·})(D)

▶ Assuming all are ̸= 0 (so take the smallest Ai possible) and no ties,
then N = D and xn =

∑n
ν=1(Ti)#P ({k·})(ν), in particular

P (p̌i(X ) = xn) = (Ti)#P ({k·})(n)
▶ xN = (Ti)#P (Ai) = 1, always
▶ If ties, N < D



Generic construction of p-values with discreteness
Remark

▶ If, for all P ∈ H0,i , Ai = Ai ,P does not depend on P (here, (Ti)#P
can) and is finite, then the set of possible values for p̂i(X ), p̄i(X ),
p̆i(X ), p̌i(X ) are also finite and do not depend on P

▶ p̂i(X ) ∈

 sup
P∈H0,i

∑
k∈Ai
k≥ℓ

(Ti)#P({k}) : ℓ ∈ Ai

 =

{
sup

P∈H0,i

(Ti)#P([ℓ,∞[) : ℓ ∈ Ai

}
a.s.

▶ p̌i(X ) ∈

 sup
P∈H0,i

∑
k∈Ai

(Ti )#P({k})≤(Ti )#P({ℓ})

(Ti)#P({k}) : ℓ ∈ Ai

 a.s.
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Generic construction of p-values with discreteness
Back to Fisher’s test

Phenotype 1 Phenotype 2 Total
Allele A 0 1 nA = 1
Allele a 2 0 na = 2
Total n1 = 2 n2 = 1 N = 3

▶ Conditionnally to nA = 1, n1 = 2, without association,
n1,A ∼ H(3, 1, 2) = P0

▶ P0({0}) = (2
0)(1

1)
(3

1)
= 1

3 , P0({1}) = (2
1)(1

0)
(3

1)
= 2

3
▶ Then p̆i(n1,A) = 2 min(P0(] − ∞, n1,A]),P0([n1,A,∞[)) =

2
31{n1,A=0} + 4

31{n1,A=1}
▶ Whereas

p̌i(n1,A) =
∑

k∈{0,1}
P0({k})≤P0({n1,A})

P0({k}) = 1
31{n1,A=0} + 2

31{n1,A=1}

▶ Clearly p̌i(n1,A) is less conservative than p̆i(n1,A), furthermore p̆i(X )
can be > 1 (as soon as X has an atom of P > 1

2 , and opening one
interval makes it invalid)



Generic construction of p-values with discreteness
Back to Fisher’s test
▶ C.d.f. of p̌i(n1,A) under H0, that is if if n1,A ∼ H(3, 1, 2) :
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The issue with discrete p-values

Strict super-uniformity

∀P ∈ H0,i ,X ∼ P,P (pi(X ) ≤ x) ≤ u(x) and ∃x ,P (pi(X ) ≤ x) < u(x)

i.e. under the null, our p-values are larger than uniforms

Problem
Usual MT procedures designed for uniform p-values (seen as the worst
case)

▶ As discrete p-values are larger than uniforms, classic thresholds are
too low, too conservative =⇒ loss of power

▶ Goal: use the knowledge of the discrete c.d.f. under the null to
improve power
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The issue with discrete p-values
▶ C.d.f. plots of 2-sided p-values associated with H(60, 5, 30),

H(60, 12, 30) and H(60, 21, 30)
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The issue with discrete p-values
▶ BH under full null, m/3 2-sided p-values derived from H(60, 5, 30),

m/3 from H(60, 12, 30), m/3 from H(60, 21, 30)
▶ MC estimation of the FDR with 104 replications

m

F
D

R
 =

 F
W

E
R

FDR of BH with uniform pval. VS BH with discr. pval.

120 300 600 900 1200
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Assumption for the remainder of the section

▶ ∃ a finite set Si such that ∀P ∈ H0,i ,X ∼ P,P (pi(X ) ∈ Si) = 1
▶ See previous remark for a sufficient condition and construction
▶ Also let

¯
si = min Si

G. Durand (LMO) The discrete heterogeneous problem 107 / 157



Tarone-Bonferroni procedures
Increasing power for discrete tests [Tarone (1990)]

▶ A simple idea: if
¯
si > α, H0,i can never be wrongly rejected so might

not count it when adjusting for multiplicity
▶ Let R1 = {i ∈ J1,mK :

¯
si ≤ α}, m(1) = |R1|, t̂TB

α = α
m(1) and

RTB = R
(
t̂TB
α

)
▶ t̂TB

α ≥ t̂Bonf
α : less conservative than Bonferroni

▶ FWER
(
RTB

)
=
∑

i∈H0 P
(
pi ≤ α

m(1)

)
=
∑

i∈H0∩R1 P
(
pi ≤ α

m(1)

)
≤

α |H0∩R1|
m(1) ≤ α

▶ We can do better : ∀k ∈ J1,mK, let Rk =
{
i ∈ J1,mK :

¯
si ≤ α

k
}
,

m(k) = |Rk |, actually FWER
(
RTB

)
is bounded by α |H0∩Rm(1)|

m(1) which
is even smaller ⇒ “fixed point” research
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Tarone-Bonferroni procedures
Increasing power for discrete tests

▶ Let K ∗ = min {k ∈ J1,mK : m(k) ≤ k}, non-empty set because
m(m(1)) ≤ m(1), t̂TB-ref

α = α
K∗ and RTB-ref = R

(
t̂TB-ref
α

)
▶ For any fixed k,

∀P ∈ F,P
(

∃i ∈ H0 : pi ≤ α

k

)
≤

∑
i∈H0∩Rk

P
(

pi ≤ α

k

)
≤ α

m(k)
k ,

which shows that FWER
(
RTB

)
,FWER

(
RTB-ref

)
≤ α

▶ K ∗ is the optimal choice, TB-refined is even less conservative
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FDR control with discrete p-values
Heyse procedure
▶ Recall the previous plot of the mean c.d.f. of the discrete p-values
▶ ⇒ idea: “invert” this mean c.d.f. at α k

m and apply a SU procedure
[Heyse (2011)]

▶ Let Fi : t 7→ supP∈H0,i PX∼P (pi(X ) ≤ t): worst-case c.d.f., and
F (t) = 1

m
∑m

i=1 Fi(t)
▶ Let S =

⋃m
i=1 Si , τk = max

{
t ∈ S : F (t) ≤ α k

m

}
▶ RHeyse = RSU (τ)
▶ BH is also the SU procedure with ξk = max

{
t ∈ S : t ≤ α k

m

}
(effective critical values), F (ξk) ≤ ξk ≤ α k

m so τk ≥ ξk : Heyse less
conservative than BH, only with heterogeneity though: if Fi = Fj = F
and the assumption Fi(t) = t, ∀t ∈ Si = S then F (t) = t for all
t ∈ S and τk = ξk

▶ Problem: RHeyse doesn’t control the FDR! [Döhler, Durand, and Roquain
(2018)]
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FDR control with discrete p-values

▶ Heyse almost works though, it works up to a small rescaling factor
▶ Let τm = max

{
t ∈ S : 1

m
∑m

i=1
Fi (t)

1−Fi (t) ≤ α
}

▶ For k < m, let τk = max
{

t ∈ S : t ≤ τm,
∑m

i=1
Fi (t)

1−Fi (τm) ≤ αk
}

▶ Let RHSU = RSU (τ)
▶ Can be more conservative than BH but not that much, and in

practice isn’t

Theorem [Döhler, Durand, and Roquain (2018)]

Assume that for all P ∈ F, the (pi)i∈H0 are independent, and they are
independent from the (pi)i∈H1 .
Then for all P ∈ F,

FDR
(
RHSU

)
≤ α
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FDR control with discrete p-values
▶ We can do even better by implicit adaptivity to m0:
▶ Let τm the same
▶ For k < m, let τk =

max
{

t ∈ S : t ≤ τm,

((
Fi (t)

1−Fi (τm)

)
(1)

+ · · · +
(

Fi (t)
1−Fi (τm)

)
(m−k+1)

)
≤ αk

}
▶ Idea: if k “good” rejections, m0 ≤ m − k + 1 so only control needed

for the worst case with m − k + 1 kept null hypotheses
▶ Let RAHSU = RSU (τ)
▶ Less conservative than HSU because of larger critical values

Theorem [Döhler, Durand, and Roquain (2018)]

Assume that for all P ∈ F, the (pi)i∈H0 are independent, and they are
independent from the (pi)i∈H1 .
Then for all P ∈ F,

FDR
(
RAHSU

)
≤ α
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FDR control with discrete p-values

▶ Both FDR controls come from the same bound

Theorem [Döhler, Durand, and Roquain (2018)]

Assume that for all P ∈ F, the (pi)i∈H0 are independent, and they are
independent from the (pi)i∈H1 . Let any critical value sequence τ with
Fi(τm) < 1 for all i ∈ J1,mK.
Then for all P ∈ F,

FDR
(
RSU(τ)

)
≤ max

1≤k≤m
max

A⊆J1,mK
|A|=m−k+1

1
k
∑
i∈A

Fi(τk)
1 − Fi(τm)
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FDR control with discrete p-values
Proof of the Theorem

▶ Recall the Lemma on SU procedures:
{pi ≤ τk̂SU , k̂SU = k} = {pi ≤ τk , k̂−i = k − 1}

▶ Another one: let (σ1, . . . , σm) = (τ2, . . . , τm, τm) and
k̂# = max{k : p(k) ≤ σk} =

∣∣∣RSU(σ)
∣∣∣. Then pi > τm ⇒ k̂−i = k̂#

▶ Proof: p(k̂−i) ≤ p−i
(k̂−i) ≤ τ−i

k̂−i = σk̂−i so k̂−i ≤ k̂#, always

▶ Let pi = p(ki ), note that p−i
(k) = p(k) for all k < ki and p−i

(k) = p(k+1)
for all m − 1 ≥ k ≥ ki

▶ pi > τm entails p(ki ) = pi > τm ≥ σk̂# ≥ p(k̂#) so ki > k̂# (also
entails m > k̂#) so p−i

(k̂#) = p(k̂#)

▶ Finally p−i
(k̂#) = p(k̂#) ≤ σk̂# = τ−i

k̂# and k̂# ≤ k̂−i
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FDR control with discrete p-values
Proof of the Theorem

▶ Starts like the proof of BH:

FDR
(
RSU(τ)

)
=
∑

i∈H0

m∑
k=1

1
k P (pi ≤ τk)P

(
k̂−i = k − 1

)

≤
∑

i∈H0

m∑
k=1

1
k Fi(τk)P

(
k̂−i = k − 1

)

≤
∑

i∈H0

E

Fi
(
τk̂−i +1

)
k̂−i + 1


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FDR control with discrete p-values
Proof of the Theorem

▶ Hide 1: 1 − Fi(τm) ≤ 1 − P (pi ≤ τm) so

1 ≤ P (pi > τm)
1 − Fi(τm)

= E
[
1{pi >τm}

1 − Fi(τm)

]
= E

[
1{pi >τm}

1 − Fi(τm)

∣∣∣∣k̂−i
]

by independence
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FDR control with discrete p-values
Proof of the Theorem

▶ Hence

FDR
(
RSU(τ)

)
≤
∑

i∈H0

E

Fi
(
τk̂−i +1

)
k̂−i + 1

× 1


≤
∑

i∈H0

E

Fi
(
τk̂−i +1

)
k̂−i + 1

× E
[
1{pi >τm}

1 − Fi(τm)

∣∣∣∣k̂−i
]

=
∑

i∈H0

E

Fi
(
τk̂−i +1

)
k̂−i + 1

1{pi >τm}
1 − Fi(τm)


≤
∑

i∈H0

E

Fi
(
τk̂#+1

)
1 − Fi(τm)

1{pi >τm}

k̂# + 1
1{k̂#<m}

 by the new Lemma
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FDR control with discrete p-values
Proof of the Theorem
▶ Hence

FDR
(
RSU(τ)

)
≤
∑

i∈H0

E

Fi
(
τk̂#+1

)
1 − Fi(τm)

1{pi >σk̂#}
k̂# + 1

1{k̂#<m}

 because τm ≥ σk̂#

≤ E

∑
i∈H0

Fi
(
τk̂#+1

)
1 − Fi(τm)

1{pi >σk̂#}
k̂# + 1

1{k̂#<m}


▶ A = {i : pi > σk̂#} = J1,mK \ RSU(σ) so |A| = m − k̂# by property of

SU

FDR
(
RSU(τ)

)
≤ E

 max
A⊆J1,mK

|A|=m−k̂#

∑
i∈H0∩A

Fi
(
τk̂#+1

)
1 − Fi(τm)

1
k̂# + 1

1{k̂#<m}


≤ max

0≤k≤m−1
max

A⊆J1,mK
|A|=m−k

∑
i∈H0∩A

Fi (τk+1)
1 − Fi(τm)

1
k + 1

G. Durand (LMO) The discrete heterogeneous problem 118 / 157



FDR control with discrete p-values
▶ Analog Lemmas for FDR bound and procedures SD
▶ HSD: SD with τk = max

{
t ∈ S :

∑m
i=1

Fi (t)
1−Fi (t) ≤ αk

}
▶ AHSD: SD with
τk = max

{
t ∈ S :

((
Fi (t)

1−Fi (t)

)
(1)

+ · · · +
(

Fi (t)
1−Fi (t)

)
(m−k+1)

)
≤ αk

}
▶ Higher critical values than HSU and AHSU, but SD: no one generally

better than the other

Theorem [Döhler, Durand, and Roquain (2018)]

Assume that for all P ∈ F, the (pi)i∈H0 are independent, and they are
independent from the (pi)i∈H1 . Let any critical value sequence τ with
Fi(τm) < 1 for all i ∈ J1,mK.
Then for all P ∈ F,

FDR
(
RSD(τ)

)
≤ max

1≤k≤m
max

A⊆J1,mK
|A|=m−k+1

1
k
∑
i∈A

Fi(τk)
1 − Fi(τk)
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Exploratory analysis in multiple testing

Exploratory analysis: searching interesting hypotheses that will be
cautiously investigated after.
Desired properties [Goeman and Solari (2011)]:
▶ Mildness: allows some false positives
▶ Flexibility: the procedure does not prescribe, but advise
▶ Post hoc: take decisions on the procedure after seing the data

[Goeman and Solari (2011)]

This reverses the traditional roles of the user and procedure in multiple
testing. Rather than [...] to let the user choose the quality criterion, and
to let the procedure return the collection of rejected hypotheses, the user
chooses the collection of rejected hypotheses freely, and the multiple
testing procedure returns the associated quality criterion.

FWER is somewhat flexible, FDR is somewhat mild
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Post hoc and replication crisis

Post hoc done wrong: p-hacking
▶ Pre-selecting variables that seem significant, exclude others
▶ Theoretical results no longer hold because the selection step is random
▶ Example: selecting the 1000 smallest p-values in a genetic study with

106 variants

▶ p-hacking may be one of the causes of the replication crisis (many
published results non reproducible)

▶ ⇒ need for exploratory analysis MT procedures with the above
properties

▶ Larger field: selective inference
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Post hoc inference
a.k.a. simultaneous inference

Confidence bounds on any set of selected variables
A confidence bound is a (random: depends on X ) function V̂ such that

∀P ∈ F,∀α ∈]0, 1[,P
(
∀S ⊂ J1,mK ,V (S) ≤ V̂ (S)

)
≥ 1 − α

▶ Hence for any selected Ŝ = Ŝ(X ), P
(
V (Ŝ) ≤ V̂ (Ŝ)

)
≥ 1 − α holds

▶ Also FDP control: P
(

∀S ⊂ J1,mK ,FDP(S) ≤ V̂ (S)
|S|∨1

)
≥ 1 − α, hence

(far) better than FDR control
▶ Originates from [Genovese and Wasserman (2006)],[Meinshausen (2006)]

▶ A guarantee over any selected set instead of a rejected set, advise
some Ŝ instead of prescribe one R : the MT paradigm is reversed
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Post hoc inference
Some first, trivial bounds
▶ V̂ (S) = |S|
▶ Let a procedure R controlling the FWER, then V̂ (S) = |S \ R| is a

valid post hoc bound

P (∃S : |S ∩ H0| > |S \ R|) ≤ P (∃S : |S ∩ H0 ∩ Rc| + |S ∩ H0 ∩ R| > |S ∩ Rc|)
≤ P (∃S : |S ∩ H0 ∩ R| > 0)
≤ P (|H0 ∩ R| > 0) ≤ α

▶ Let a procedure R controlling the k-FWER, then
V̂ (S) = |S \ R| + k − 1 is a valid post hoc bound

P (∃S : |S ∩ H0| > |S \ R| + k − 1) ≤ P (∃S : |S ∩ H0 ∩ R| > k − 1)
≤ P (|H0 ∩ R| > k − 1) ≤ α
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BNR technology
[Blanchard, Neuvial, and Roquain (2020)]

Key concept: reference family
▶ R = (Rk , ζk)k∈K with Rk ⊆ J1,mK, ζk ∈ J0, |Rk |K (everything can

depend on X ) such that the Joint Error Rate (JER):

JER(R) = P (∃k, |Rk ∩ H0| > ζk)

is controlled at level α for all P ∈ F

▶ Conversely, ∀P ∈ F,PX∼P (∀k, |Rk ∩ H0| ≤ ζk) ≥ 1 − α

▶ Confidence bound only on the K = |K| members of R
▶ =⇒ Derivation of a global confidence bound by interpolation
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BNR technology
[Blanchard, Neuvial, and Roquain (2020)]

▶ Idea: we get the following info on H0:
H0 ∈ A(R) = {A ⊆ J1,mK ,∀k, |Rk ∩ A| ≤ ζk}

Two different bounds
▶ V ∗

R(S) = maxA∈A(R) |S ∩ A| optimal but hard to compute
▶ VR(S) = mink∈K (ζk + |S \ Rk |) ∧ |S| easier to compute

▶ VR is worse than V ∗
R, proof: let A ∈ A(R)

▶ |S∩A| = |S∩A∩Rk |+|S∩A∩Rk
c| ≤ |A∩Rk |+|S∩Rk

c| ≤ ζk +|S\Rk |
▶ True for all k: |S ∩ A| ≤ VR(S), true for all A: V ∗

R(S) ≤ VR(S)
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BNR technology

Proposition
Assume that the Rk ’s are nested, that is Rk ⊆ Rk′ or Rk′ ⊆ Rk for
k, k ′ ∈ K. Then V ∗

R(S) = VR(S) for all S ⊆ J1,mK.

▶ In the following we identify K and J1,KK such that Rk ⊆ Rk′ for
k ≤ k ′

▶ VR(S) = mink≤K (ζk + |S \ Rk |) ∧ |S| =
mink≤K (ζk + |S \ (Rk ∩ S)|) ∧ |S| = VR∧S (S) with
R∧S = (Rk ∩ S, ζk)k≤K

▶ Let ζ̃k = VR∧S (Rk ∩ S) = minj≤K (ζj + |(Rk ∩ S) \ (Rj ∩ S)|) ∧ |Rk ∩ S|
and consider R̃ = (Rk ∩ S, ζ̃k)k≤K

▶ By taking j = k, ζ̃k ≤ (ζk + |(Rk ∩ S) \ (Rk ∩ S)|) ∧ |Rk ∩ S| ≤ ζk so
V R̃(S) ≤ VR∧S (S) = VR(S)
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BNR technology
Proof of the Proposition

▶ Useful set property : |E \ G | ≤ |E \ F | + |F \ G |

V R̃(S) = min
k≤K

(
min
j≤K

(ζj + |(Rk ∩ S) \ (Rj ∩ S)|) ∧ |Rk ∩ S| + |S \ (Rk ∩ S)|
)

∧ |S|

= min
k≤K

(
min
j≤K

(ζj + |(Rk ∩ S) \ (Rj ∩ S)|) + |S \ (Rk ∩ S)|
)

∧ |S|

= min
k≤K

min
j≤K

(ζj + |(Rk ∩ S) \ (Rj ∩ S)| + |S \ (Rk ∩ S)|) ∧ |S|

≥ min
j≤K

(ζj + |S \ (Rj ∩ S)|) ∧ |S| = VR∧S (S) = VR(S)

▶ So V R̃(S) = VR(S) (self-consistency result)
▶ Remark: this intermediate result does not use the nestedness and is

true in general
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BNR technology
Proof of the Proposition

▶ Let’s construct A ⊆ S, A ∈ A(R) such that |A| ≥ VR(S), will imply
V ∗
R(S) ≥ VR(S)

▶ By nestedness,

ζ̃k = min
j≤K

(ζj + |(Rk ∩ S) \ (Rj ∩ S)|) ∧ |Rk ∩ S|

≤ min
j≤K

(ζj + |(Rk+1 ∩ S) \ (Rj ∩ S)|) ∧ |Rk+1 ∩ S|

= ζ̃k+1
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BNR technology
Proof of the Proposition

▶ Furthermore,

ζ̃k+1 = min
j≤K

(ζj + |(Rk+1 ∩ S) \ (Rj ∩ S)|) ∧ |Rk+1 ∩ S|

≤ min
j≤K

(ζj + |(Rk+1 ∩ S) \ (Rk ∩ S)| + |(Rk ∩ S) \ (Rj ∩ S)|) ∧ |Rk+1 ∩ S|

= (|(Rk+1 ∩ S) \ (Rk ∩ S)| + min
j≤K

(ζj + |(Rk ∩ S) \ (Rj ∩ S)|)) ∧ |Rk+1 ∩ S|

= |(Rk+1 ∩ S) \ (Rk ∩ S)| + min
j≤K

(ζj + |(Rk ∩ S) \ (Rj ∩ S)|) ∧ |Rk ∩ S|

(nestedness: |Rk+1 ∩ S| = |(Rk+1 ∩ S) \ (Rk ∩ S)| + |Rk ∩ S|)
= |(Rk+1 ∩ S) \ (Rk ∩ S)| + ζ̃k

▶ So 0 ≤ ζ̃k+1 − ζ̃k ≤ |(Rk+1 ∩ S) \ (Rk ∩ S)|
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BNR technology
Proof of the Proposition

▶ Let Bk = {ζ̃k − ζ̃k−1 elements of (Rk ∩ S) \ (Rk−1 ∩ S)}, 1 ≤ k ≤ K ,
with R0 = ∅ and ζ̃0 = 0

▶ Let A =
⋃K

k=1 Bk ∪ (S \ (RK ∩ S)), disjoint union because of
nestedness, A ⊆ S

▶ |Rk ∩ A| =
∣∣∣⋃k

ℓ=1 Bℓ

∣∣∣ =
∑k

ℓ=1 |Bℓ| =
∑k

ℓ=1(ζ̃ℓ − ζ̃ℓ−1) = ζ̃k ≤ ζk so
A ∈ A(R)

▶ |A| =
∑K

ℓ=1 |Bℓ| + |S \ (RK ∩ S)| = ζ̃K + |S \ (RK ∩ S)| =
(ζ̃K + |S \ (RK ∩ S)|) ∧ |S| because A ⊆ S

▶ Finally VR(S) = V R̃(S) ≤ (ζ̃K + |S \ (RK ∩ S)|) ∧ |S| = |A|
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BNR technology

▶ How to construct effectively a reference family (Rk , ζk)k∈K with JER
control?

▶ One approach: constrain ζk = k − 1, Rk = {i ∈ J1,mK , pi ≤ tk},
k ∈ J1,mK, tk ↗ and search for valid (tk)1≤k≤m

▶ In this case, Rk ⊆ Rk+1: nestedness hence VR optimal
▶ In this case, JER(R) = P (∃k, |Rk ∩ H0| ≥ k): k-FWER but

simultaneous over all k
▶ (tk)1≤k≤m can be constructed with probabilistic inequalities
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Simes and Hommel inequalities
[Hommel (1983)], [Simes (1986)]

▶ Let U1, . . .Um0 m0 super-uniform random variables
▶ Then P

(
∃i ≤ m0,U(i) ≤ αi

m0Hm0

)
≤ α (Hommel inequality)

▶ If, furthermore, they are wPRDS on J1,m0K,
P
(
∃i ≤ m0,U(i) ≤ αi

m0

)
≤ α (Simes inequality)
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Simes and Hommel inequalities
Proofs

▶ Consider the model FU = {PU1,...,Um0
} with H0,i = FU for all

i ∈ J1,m0K, the Ui ’s are valid p-values
▶ Note that FWER = FDR when all null hypotheses are true, which is

the case here

P
(

∃i ≤ m0,U(i) ≤ αi
m0Hm0

)
= FWER(RBY)

= FDR(RBY)
≤ α

▶ Same proof for Simes and wPRDS using the FDR control of BH
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BNR technology
▶ Consequence: ∀P ∈ F,

P
(
∃i ≤ m0, p(i :H0) ≤ αi

mHm

)
≤ P

(
∃i ≤ m0, p(i :H0) ≤ αi

m0Hm0

)
≤ α and

similarly with wPRDS on H0, P
(
∃i ≤ m0, p(i :H0) ≤ αi

m

)
≤ α

▶ tk = αk
mHm

induces JER control, and if wPRDS on H0 ∀P ∈ F,
tk = αk

m too
▶ Proof: let cm = Hm or 1 depending on the case (Hommel or Simes)

∃k ≤ K : |Rk ∩ H0| ≥ k ⇔ ∃k ≤ m0 :
∣∣∣∣{i ∈ J1,mK : pi ≤ αk

mcm

}
∩ H0

∣∣∣∣ ≥ k

⇔ ∃k ≤ m0 :
∣∣∣∣{i ∈ H0 : pi ≤ αk

mcm

}∣∣∣∣ ≥ k

⇔ ∃k ≤ m0 : p(k:H0) ≤ αk
mcm
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BNR technology

Theorem [Blanchard, Neuvial, and Roquain (2020)]

The bound V ∗
RHommel

: S 7→ min1≤k≤m

(
k − 1 +

∑
i∈S 1

{
pi >

αk
mHm

}) ∧ |S| is
a valid confidence bound, associated to the reference family
RHommel =

({
i : pi ≤ αk

mHm

}
, k − 1

)
k∈J1,mK

.

If, for all P ∈ F, the (pi) are wPRDS with H0 as the subset, the bound
V ∗
RSimes

: S 7→ min1≤k≤m
(
k − 1 +

∑
i∈S 1{pi >

αk
m }
)

∧ |S| is a valid
confidence bound, associated to the reference family
RSimes =

({
i : pi ≤ αk

m

}
, k − 1

)
k∈J1,mK

.
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Closed testing
[Marcus, Peritz, and Gabriel (1976)]

▶ Designed for FWER control
▶ Form H0,I =

⋂
i∈I H0,i all intersection hypotheses

▶ Have a collection of α-level local intersection tests ϕI :
∀P ∈ H0,I ,PX∼P (ϕI(X ) = 1) ≤ α

▶ Examples:
▶ Bonferroni local test ϕI = 1 if ∃i ∈ I : pi ≤ α

|I|
▶ Hommel local test ϕI = 1 if ∃i ∈ I : p(i :I) ≤ αi

|I|H|I|

▶ Simes local test ϕI = 1 if ∃i ∈ I : p(i :I) ≤ αi
|I| (under wPRDS on H0)

▶ Proofs: if P ∈ H0,I , P ∈ H0,i for all i ∈ I so L(pi) ⪰ U([0, 1]) for all
i ∈ I
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Closed testing

▶ Closed testing: iteratively test H0,I only if all H0,J , J ⊋ I, are rejected,
then reject the individual hypotheses H0,i such that H0,{i} has been
rejected: RClosed = {i ∈ J1,mK : ∀I ⊆ J1,mK with i ∈ I, ϕI = 1}

▶ ∀P ∈ F,FWER
(
RClosed

)
≤ α

▶ P ∈ H0,H0 (tautological), so

FWER
(
RClosed

)
= P (∃i ∈ H0 : ∀I ⊆ J1,mK , i ∈ I, ϕI = 1)

≤ P (ϕH0 = 1)
≤ α

▶ Remark: each intersection test at level α, no multiplicity adjustment
to the number of intersection hypotheses tested (only ϕH0 matters)
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Closed testing
A fun result

Proposition
Assume that closed testing is conducted with the Bonferroni intersection
test ϕI = 1{∃i∈I:pi ≤ α

|I|

}. Then RClosed = RHB a.s.

▶ First note that ∀k ∈ J1,mK , ∀I such that |I| = m − k + 1, ∃k ′ ≤ k
such that p(k′) ∈ {pi : i ∈ I}, because if pi > p(k) for all i ∈ I then
|I| ≤ m − k

▶ If pi ≤ α
m−k̂HB+1 (implies k̂HB ≥ 1), let I such that i ∈ I, we want

ϕI = 1. 2 cases.
▶ If |I| ≤ m − k̂HB + 1 then pi ≤ α

m−k̂HB+1 ≤ α
|I| so ϕI = 1

▶ If |I| > m − k̂HB + 1 (implies k̂HB ≥ 2), |I| = m − k + 1 with
k ∈ J1, k̂HBJ. Let k ′ ≤ k such that p(k′) ∈ {pi : i ∈ I}. k ′ ≤ k̂HB so
by definition of SD procedures p(k′) ≤ α

m−k′+1 ≤ α
m−k+1 = α

|I| so
ϕI = 1

▶ Hence RHB ⊆ RClosed
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Closed testing
Proof of the Proposition

▶ Let i ∈ RClosed : ϕI = 1 for all I such that i ∈ I
▶ Let k̃ = min

{
k ∈ J1,mK : pi ≤ α

m−k+1

}
, well-defined because

ϕ{i} = 1 so pi ≤ α

▶ Goal : show that k̃ ≤ k̂HB, will imply i ∈ RHB

▶ By recursion, p(k′) ≤ α
m−k′+1 for all k ′ ∈ J1, k̃K, imply k̃ ≤ k̂HB by

definition
▶ k ′ = 1: ϕJ1,mK = 1 so p(1) ≤ α

m
▶ Let k ′ < k̃, by definition of k̃, pi >

α
m−k′+1 ≥ p(k′) ≥ · · · ≥ p(1)

▶ So i ∈ I = J1,mK \ {(1), . . . , (k ′)} with |I| = m − k ′. i ∈ RClosed so
ϕI = 1, hence ∃j ∈ I : pj ≤ α

|I| = α
m−(k′+1)+1 hence

p(k′+1) = minj∈I pi ≤ α
m−(k′+1)+1
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Closed testing for post hoc inference
[Goeman and Solari (2011)]

Main idea
The closed testing provides more information than just the individual
rejections:
▶ Let X the (random) set of all I such that we rejected H0,I
▶ Simultaneous guarantee over all H0,I , I ∈ X :

∀P ∈ F,P (∃I ∈ X ,P ∈ H0,I) ≤ α

▶ Proof: as before, if P ∈ H0,I , I ⊆ H0, so H0 ∈ X , so ϕH0 = 1
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Closed testing for post hoc inference

▶ A simple example where the closed testing is more informative than
the resulting FWER procedure:

▶ p1 = 2α
3 , p2 = 2α

3 , p3 = 1, and Simes intersection test
▶ p(k) ≤ αk

3 for k = 1 and 2 so H0,{1,2,3} rejected
▶ p(2) ≤ α2

2 so H0,{1,2} rejected
▶ But p(1) >

α
2 , p(2) >

α
2 and p(3) > α so H0,{1,3} and H0,{2,3}

conserved
▶ Hence H0,{1}, H0,{2} and H0,{3} all conserved and RClosed = ∅, but

we learned that there is signal in H0,{1,2,3} and H0,{1,2}!
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Closed testing for post hoc inference
Confidence bound derivation

▶ The proposed confidence bound is VGS(S) = maxJ⊆S
J ̸∈X

|J |

▶ Uses all information in X , not just singletons
▶ First note that VGS(S) = maxJ ̸∈X |S ∩ J |, ≤ obvious, and if J ̸∈ X ,

S ∩ J ∈ X would imply J ∈ X by closure, so S ∩ J ̸∈ X and ≥
achieved

▶ VGS(S) = maxJ⊆S
J ̸∈X

|J | is a valid confidence bound because

P (∃S, |S ∩ H0| > VGS(S)) ≤ P
(

∃S, |S ∩ H0| > max
J ̸∈X

|S ∩ J |
)

≤ P (H0 ∈ X )
≤ P (ϕH0 = 1) ≤ α

G. Durand (LMO) Towards exploratory analysis 143 / 157



Closed testing for post hoc inference
JER equivalence

Proposition
R = (I, |I| − 1)I∈X controls the JER and VGS(S) = V ∗

R(S).

P (∃I ∈ X : |I ∩ H0| > |I| − 1) ≤ P (∃I ∈ X : |I ∩ H0| = |I|)
≤ P (∃I ∈ X : I ⊆ H0)
≤ P (H0 ∈ X ) by closure
≤ P (ϕH0 = 1) ≤ α

▶ Recall VGS(S) = maxJ∈X c |S ∩ J |
▶ A(R)c = {A : ∃I ∈ X , |I ∩ A| = |I|} = {A : ∃I ∈ X , I ∩ A = I} = {A :

∃I ∈ X , I ⊆ A} = X by closure
▶ So VGS(S) = maxJ∈A(R) |S ∩ J | = V ∗

R(S)
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Closed testing for post hoc inference
JER equivalence

Proposition
Reciprocally, let R that controls the JER, then there exists a collection of
intersection tests for which VGS(S) = V ∗

R(S).

▶ Let ϕI = 1{I ̸∈A(R)}, valid test : let P ∈ H0,I , so I ⊆ H0, then

P (I ̸∈ A(R)) = P (∃k ∈ K : |I ∩ Rk | > ζk)
≤ P (∃k ∈ K : |H0 ∩ Rk | > ζk) ≤ α

▶ By definition, A(R) = exactly the conserved intersection hypotheses,
so trivially A(R) ⊆ X c and V ∗

R(S) ≤ VGS(S)
▶ Conversely, if J ∈ X c, there is B ∈ A(R) such that J ⊆ B so

|S ∩ J | ≤ |S ∩ B| and so VGS(S) ≤ V ∗
R(S)
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Back to BNR technology
[Durand et al. (2020)]

▶ How to construct effectively a reference family (Rk , ζk)k∈K with JER
control?

▶ Another approach: constrain Rk to some deterministic regions (using
prior knowledge like gene ontologies) and (super-)estimate |Rk ∩ H0|
to get a ζk

Proposition
If the Rk form a partition of J1,mK, then V ∗

R(S) =
∑

k∈K ζk ∧ |S ∩ Rk |.

▶ Let any A ∈ A(R), |Rk ∩ A| ≤ ζk so |A ∩ S| =
∑

k∈K |A ∩ S ∩ Rk |
with |A ∩ S ∩ Rk | ≤ |Rk ∩ A| ≤ ζk and |A ∩ S ∩ Rk | ≤ |S ∩ Rk | so by
taking the max, V ∗

R(S) ≤
∑

k∈K ζk ∧ |S ∩ Rk |
▶ Construct A =

⋃
k∈K {ζk ∧ |S ∩ Rk | elements of S ∩ Rk}, A ∈ A(R)

so
∑

k∈K ζk ∧ |S ∩ Rk | = |A| ≤ V ∗
R(S)
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Back to BNR technology
ζk computation

Theorem
Assume that for all P ∈ F, the (pi)i∈H0 are independent, and they are
independent from the (pi)i∈H1 .

Assume that K and the Rk are deterministic. Let Cλ =
√

1
2 log

(
1
λ

)
for all

λ ∈]0, 1[. Let

ζk = |Rk | ∧ min
t∈[0,1[

 C α
K

2(1 − t) +

 C2
α
K

4(1 − t)2 +
∑

i∈Rk
1{pi >t}

1 − t

1/2


2

Then, if α
K < 1

2 , R controls the JER at level α.
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Back to BNR technology
ζk computation

▶ In practice,

ζk = |Rk | ∧ min0≤ℓ≤|Rk |

 C α
K

2(1−p(ℓ:Rk ))
+
(

C2
α
K

4(1−p(ℓ:Rk ))2 + |Rk |−ℓ
1−p(ℓ:Rk )

)1/2
2

▶ Entry cost: ζk ≥
⌊
C2

α
K

⌋
=
⌊
log
(

K
α

)⌋
≥ 1 as soon as α ≤ e−2K :

impossible to detect regions made of pure signal
▶ α

K : union bound correction w.r.t. the number of regions
▶ Dependency on α and K are only through a log
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Back to BNR technology
Proof of the Theorem

▶ Dvoretzky-Kiefer-Wolfowitz-Massart inequality [Massart (1990)]: let any
S ⊆ J1,mK, S0 = S ∩ H0 ν = |S0| and U1, . . . ,Um i.i.d. r.v. with
PU1 = U([0, 1]). For all ε ≥

√
1

2ν log 2,

P

sup
t∈R

1
ν

∑
i∈S0

1{Ui ≤t} − u(t)

 > ε

 = P

 sup
t∈[0,1[

1
ν

∑
i∈S0

1{Ui ≤t} − t

 > ε


≤ e−2νε2

▶ Let any λ < 1
2 and ε =

√
1

2ν log
(

1
λ

)
= 1√

ν
Cλ, ε ≥

√
1

2ν log 2

G. Durand (LMO) Towards exploratory analysis 149 / 157



Back to BNR technology
Proof of the Theorem

▶ So, P
(
supt∈[0,1[

(
1
ν

∑
i∈S0 1{Ui ≤t} − t

)
> ε

)
≤ λ

▶ P
(
supt∈[0,1[

(
1
ν

∑
i∈S0 1{Ui ≤t} − t

)
≤ ε

)
≥ 1 − λ

▶ P
(
inft∈[0,1[

(
t − 1

ν

∑
i∈S0 1{Ui ≤t}

)
≥ −ε

)
≥ 1 − λ

▶ P
(
∀t ∈ [0, 1[, t − 1

ν

∑
i∈S0 1{Ui ≤t} ≥ −ε

)
≥ 1 − λ

▶ P
(
∀t ∈ [0, 1[,

(
1 − 1

ν

∑
i∈S0 1{Ui ≤t}

)
− (1 − t) ≥ −ε

)
≥ 1 − λ

▶ P
(
∀t ∈ [0, 1[, 1

ν

∑
i∈S0 1{Ui >t} − (1 − t) ≥ −ε

)
≥ 1 − λ
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Back to BNR technology
Proof of the Theorem

▶ With P ≥ 1 − λ, for all t ∈ [0, 1[,∑
i∈S0 1{Ui >t} − ν(1 − t) +

√
νCλ ≥ 0, let x =

√
ν and solve this

second degree polynom in x
▶ ∆ = C2

λ + 4(1 − t)
∑

i∈S0 1{Ui >t} > 0, the polynom is ≥ 0 inside of

its two real roots
Cλ±

√
C2

λ
+4(1−t)

∑
i∈S0

1{Ui >t}
2(1−t) , one is ≤ 0 and the

other ≥ 0, and x =
√
ν ≥ 0, so

x ≤
Cλ +

√
C2

λ + 4(1 − t)
∑

i∈S0 1{Ui >t}

2(1 − t)

= Cλ

2(1 − t) +
(

C2
λ

4(1 − t)2 +
∑

i∈S0 1{Ui >t}
1 − t

)1/2
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Back to BNR technology
Proof of the Theorem

▶ With P ≥ 1 − λ, for all t ∈ [0, 1[,

ν ≤

 Cλ

2(1 − t) +
(

C2
λ

4(1 − t)2 +
∑

i∈S0 1{Ui >t}
1 − t

)1/2
2

▶ Let bit = P (pi ≤ t), for i ∈ H0, bit ≤ t so 1{Ui >t} ≤ 1{Ui >bit}
▶ Then,

P

ν ≤ min
t∈[0,1[

 Cλ

2(1 − t) +
(

C2
λ

4(1 − t)2 +
∑

i∈S0 1{Ui >bit}
1 − t

)1/2
2
 ≥ 1−λ
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Back to BNR technology
Proof of the Theorem

▶ Lemma:
(∑

i∈S0 1{Ui >bit}
)

t∈[0,1[
L=
(∑

i∈S0 1{pi >t}
)

t∈[0,1[
▶ So

P

ν ≤ min
t∈[0,1[

 Cλ

2(1 − t) +
(

C2
λ

4(1 − t)2 +
∑

i∈S0 1{pi >t}
1 − t

)1/2
2
 ≥ 1 − λ

▶ And finally

P

|S ∩ H0| ≤ min
t∈[0,1[

 Cλ

2(1 − t) +
(

C2
λ

4(1 − t)2 +
∑

i∈S 1{pi >t}
1 − t

)1/2
2
 ≥ 1−λ

▶ Apply this to S = Rk and λ = α
K , add the ⌊·⌋ and |Rk |∧ freely, and

use a union bound to conclude
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Back to BNR technology
Proof of the Lemma

▶ We show that the marginals finite-dimensional are equal, only with
two marginals w.l.o.g.: let t1 < t2 ∈ [0, 1[

▶ We show
(∑

i∈S0 1{Ui >bit1},
∑

i∈S0 1{Ui >bit2}
) L=(∑

i∈S0 1{pi >t1},
∑

i∈S0 1{pi >t2}
)

with the equality of the
characteristic functions

ϕ(s, u) = E

exp

ıs ∑
i∈S0

1{Ui >bit1} + ıu
∑
i∈S0

1{Ui >bit2}


=
∏
i∈S0

E
[
exp

(
ıs1{Ui >bit1} + ıu1{Ui >bit2}

)]
by independence

▶ Same for
(∑

i∈S0 1{pi >t1},
∑

i∈S0 1{pi >t2}
)
: showing equality inside

the product is enough
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Back to BNR technology
Proof of the Lemma

▶ (bit)t nondecreasing so

ϕi(s, u) = E
[
exp

(
ıs1{Ui >bit1} + ıu1{Ui >bit2}

)]
= E

[
exp

(
ı(s + u)1{Ui >bit2} + ıs1{bit2 ≥Ui >bit1}

)]
=
∫

[0,1]
e

ı(s+u)1{x>bit2}
+ıs1{bit2 ≥x>bit1}dx

=
∫

]bit2 ,1]
eı(s+u)dx +

∫
]bit1 ,bit2 ]

eısdx +
∫

[0,bit1 ]
dx

= eı(s+u)(1 − bit2) + eıs(bit2 − bit1) + bit1
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Back to BNR technology
Proof of the Lemma

▶ Similarly,

ψi(s, u) = E
[
exp

(
ıs1{pi >t1} + ıu1{pi >t2}

)]
= E

[
exp

(
ı(s + u)1{pi >t2} + ıs1{t2≥pi >t1}

)]
=
∫

[0,1]
eı(s+u)1{x>t2}+ıs1{t2≥x>t1}Ppi (dx)

=
∫

]t2,1]
eı(s+u)Ppi (dx) +

∫
]t1,t2]

eısPpi (dx) +
∫

[0,t1]
Ppi (dx)

= eı(s+u)Ppi (]t2, 1]) + eısPpi (]t1, t2]) + Ppi ([0, t1])
= eı(s+u)(1 − bit2) + eıs(bit2 − bit1) + bit1
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Topics that were not covered

▶ Bayesian multiple testing, ℓ-values, q-values
▶ Knock-offs
▶ Permutation p-values, conformal p-values
▶ Sequential/online multiple testing
▶ Multiple testing with e-values
▶ And many more
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